skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 19, 2026

Title: Linearity Enhancement in Segmented, Current-steering DACs Using Modified Switching
Digital-to-Analog Converters (DACs) are inseparable fundamental components in radios that act as translator between digital signal processing and all types of transmitters including software-defined radios. Current Steering DACs (CS-DACs) are of interest because of their good linearity and high speed. In this article, a modification to the switching of a segmented CS-DAC is proposed through the use of a sub-DAC. The proposed techniques not only allow for reduced die area but also reduce power consumption while the static nonlinearity can be kept similar to the conventional segmented CS-DACs. The MATLAB model of the proposed DAC is tested for the performance of the 7 bit DAC under ideal and non-ideal cases and implemented in 22nm FDSOI technology with forward body biasing. The total power consumption of the proposed DAC is 2.4mW and it achieved FoM of 433.  more » « less
Award ID(s):
2314813
PAR ID:
10615785
Author(s) / Creator(s):
;
Publisher / Repository:
Proceedings of the Annual Government Microcircuit Applications & Critical Technology Conference (GOMACTech)
Date Published:
Format(s):
Medium: X
Location:
Los Angeles
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we investigate a downlink channel of a large intelligent surface (LIS) communication system. The LIS is equipped with B-bit discrete phase shifts while base station (BS) exploits low-resolution digital-to-analog converters (DACs). Without the knowledge of channel state information (CSI) related to the LIS, we propose a practical phase shift design method, whose computational complexity increases by 2 B independent of the number of reflecting elements N. A tight lower bound for the asymptotic rate of the user is obtained in closed form. As N increases, we observe that the asymptotic rate becomes saturated because both the received signal power and the DAC quantization noise increase. Compared to the optimal continuous phase shift design with perfect CSI, our proposed method asymptotically approaches the ideal benchmark performance for moderate to high values of B. The derived results and observations are verified by simulation results. 
    more » « less
  2. Massive MIMO using low-resolution digital-to-analog converters (DACs) at the base station (BS) is an attractive downlink approach for reducing hardware overhead and for reducing power consumption, but managing the large quantization noise effect is a challenge. Spatial Sigma-Delta modulation is a recently emerged technique for tackling the aforementioned effect. Assuming a uniform linear array at the BS, it works by shaping the quantization noise as high spatial-frequency, or angle, noise. By restricting the user-serving region to be within a smaller angular region, the quantization noise incurred by the users can be effectively reduced. We previously showed that, under the one-bit DAC case, the quantization noise can be satisfactorily contained using a simple first-order Sigma-Delta modulation scheme. In this work we study the potential of spatial Sigma-Delta modulation in the two-bit DAC case and under second-order modulation. Our empirical results indicate that second-order spatial Sigma-Delta modulation provides better quantization noise suppression. 
    more » « less
  3. Enabling communications in the (sub-)THz band will call for massive multiple-input multiple-output (MIMO) arrays at either the transmit- or receive-side, or at both. To scale down the complexity and power consumption when operating across massive frequency and antenna dimensions, a sacrifice in the resolution of the digital-to-analog/analog-to-digital converters (DACs/ADCs) will be inevitable. In this paper, we analyze the extreme scenario where both the transmit- and receive-side are equipped with fully digital massive MIMO arrays and 1-bit DACs/ADCs, which leads to a system with minimum radio-frequency complexity, cost, and power consumption. Building upon the Bussgang decomposition, we derive a tractable approximation of the mean squared error (MSE) between the transmitted data symbols and their soft estimates. Numerical results show that, despite its simplicity, a doubly 1-bit quantized massive MIMO system with very large antenna arrays can deliver an impressive performance in terms of MSE and symbol error rate. 
    more » « less
  4. Millimeter wave (mmW) communications is viewed as the key enabler of 5G cellular networks due to vast spectrum availability that could boost peak rate and capacity. Due to increased propagation loss in mmW band, transceivers with massive antenna array are required to meet a link budget, but their power consumption and cost become limiting factors for commercial systems. Radio designs based on hybrid digital and analog array architectures and the usage of radio frequency (RF) signal processing via phase shifters have emerged as potential solutions to improve radio energy efficiency and deliver performances close to the conventional digital antenna arrays. In this paper, we provide an overview of the state-of-the-art mmW massive antenna array designs and comparison among three array architectures, namely digital array, partially-connected hybrid array (sub-array), and fully-connected hybrid array. The comparison of performance, power, and area for these three architectures is performed for three representative 5G downlink use cases, which cover a range of pre-beamforming signal-to-noise-ratios (SNR) and multiplexing regimes. This is the first study to comprehensively model and quantitatively analyze all design aspects and criteria including: 1) optimal linear precoder, 2) impact of quantization error in digital-to-analog converter (DAC) and phase shifters, 3) RF signal distribution network, 4) power and area estimation based on state-of-the-art mmW circuits including baseband digital precoding, digital signal distribution network, high-speed DACs, oscillators, mixers, phase shifters, RF signal distribution network, and power amplifiers. Our simulation results show that the fully-digital array architecture is the most power and area efficient compared against optimized designs for sub-array and hybrid array architectures. Our analysis shows that digital array architecture benefits greatly from multi-user multiplexing. The analysis also reveals that sub-array architecture performance is limited by reduced beamforming gain due to array partitioning, while the system bottleneck of the fully-connected hybrid architecture is the excessively complicated and power hungry RF signal distribution network. 
    more » « less
  5. null (Ed.)
    This paper proposes a novel foreground lineariza- tion scheme for a high-speed current-steering (CS) digital-to- analog converter (DAC). The technique leverages neural networks (NNs) to derive a lookup-table (LUT) that maps the inverse of the DAC transfer characteristic onto the input codes. The algorithm is shown to improve conventional methods by at least 6dB in terms of intermodulation (IM) performance for frequencies up to 9GHz on a state-of-the-art 10-bit CS-DAC operating at 40.96GS/s (gigasamples-per-second) in 14nm CMOS. 
    more » « less