skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 23, 2026

Title: Empowering Teacher-Driven Computational Thinking Integration through Collaborative Partnerships
Recently, there has been a growing emphasis on training teachers to integrate computational thinking (CT) practices into disciplinary instruction. However, many current approaches involve a "top-down" method, where CT concepts and teacher training are dictated by external CT “experts,” often in an abstract and generalized manner, rather than being developed collaboratively or contextually with the teachers. These approaches typically treat CT as a set of abstract concepts, which can fail to promote a holistic understanding of the purposes and disciplinary value of CT. Consequently, teachers may feel less inclined to integrate CT into their regular teaching practice beyond the confines of professional development sessions. Furthermore, teachers are frequently positioned as novices awaiting the transmission of relevant CT knowledge rather than as agentive knowledge-builders with valuable expertise. This can undermine their autonomy, ownership, adaptability, and long-term commitment to implementing CT effectively in their teaching practice. We propose an alternative, “bottom-up” approach to supporting teachers in CT integration through a collaborative partnership between researchers and practitioners. We share evidence that this partnership led to understanding CT as inherently contextualized and productive for disciplinary problem-solving.  more » « less
Award ID(s):
2219332
PAR ID:
10615796
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
National Association for Research in Science Teaching
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite increasing attention to the potential benefits of infusing computational thinking into content area classrooms, more research is needed to examine how teachers integrate disciplinary content and CT as part of their pedagogical practices. This study traces how middle and high school teachers (n = 24) drew on their existing knowledge and their experiences in a STEM professional development program to infuse CT into their teaching. Our work is grounded in theories of TPACK and TPACK-CT, which leverage teachers’ knowledge of technology for computational thinking (CT), CT as a disciplinary pedagogical practice, and STEM content knowledge. Findings identify three key pedagogical supports that teachers utilized and transformed as they taught CT-infused lessons (articulating a key purpose for CT infusion, scaffolding, and collaborative contexts), as well as barriers that caused teachers to adapt or abandon their lessons. Implications include suggestions for future research on CT infusion into secondary classrooms, as well as broader recommendations to support teachers in applying STEM professional development content to classroom practice. 
    more » « less
  2. There is a growing movement seeking to promote Computer Science (CS) and Computational Thinking (CT) across K-8 education. While advantageous for supporting student learning through engaging in complex and interdisciplinary learning, integrating CS/CT into the elementary school curriculum can pose curricular and pedagogical challenges. For one, teachers themselves must understand the concepts and disciplinary practices associated with CS/CT and the other content areas being integrated, as well as develop a related pedagogical repertoire. This study addresses how two 3rd grade teachers made sense of the intersection of disciplinary practices and pedagogical practices to support student learning. We present preliminary findings from a Research-Practice Partnership that worked with elementary teachers to integrate aspects of CS/CT practice into existing content areas. We identified two main disciplinary activities that drove their curriculum design and pedagogical practices: (1) the importance of productive frustration and failure; and (2) the importance of precision 
    more » « less
  3. Yin, Shi (Ed.)
    Computational thinking (CT) is an essential problem-solving skill that students need to successfully live and work with developing technologies. There is an increasing call in the literature by researchers and policy leaders to integrate CT at the elementary level into core subjects to provide early and equitable access for all students. While some critics may claim the concepts and skills of CT are developmentally advanced for elementary age students, subjects such as science can provide real-world and relevant problems to which foundational CT components can be applied. By assessing how CT concepts and approaches integrate authentically into current science lessons, policymakers, and district leaders can be more intentional in supporting implementation efforts. This research used an exploratory survey design to examine the frequencies of CT concepts (decomposition, algorithms, abstraction, and pattern recognition) and approaches (tinkering, creating, debugging, perseverance, and collaboration) that exist in science in K–5 schools in a northeast state in the United States as reported by elementary science teachers (n = 259). Hierarchical linear modeling was used to analyze the influence of teacher and district factors on the amount of time CT concepts and approaches were integrated in the science lessons. Experience, grade level, confidence, and participation in a research–practice partnership were found to be significant predictors of CT. This study contributes to a better understanding of variables affecting CT teaching frequency that can be leveraged to impact reform efforts supporting CT integration in science. 
    more » « less
  4. null (Ed.)
    We explored how preservice teachers in a middle school science methods course learned and applied computational thinking (CT) concepts and activities during a month-long intervention. In the intervention, preservice teachers learned about CT concepts through an hour-long lecture in their methods class, practiced a computing-integration activity for electromagnetic waves, and prepared and implemented a lesson plan based on the activity in student teaching. The intervention was in the early stages of design, and, therefore, the research is exploratory with primarily qualitative data. The data were collected at multiple points throughout the month to measure the development of knowledge and attitudes about CT and computing integration. We found that preservice teachers had little knowledge of computing before the intervention that gradually evolved into a deep understanding that they wanted to apply to computing-integrated activities science and other subjects. Though they had high levels of uncertainty after initial instruction and practicing the computing-integration activity, they found the student teaching experience rewarding and motivating to including computing in their future teaching practice. 
    more » « less
  5. As schools and districts across the United States adopt computer science standards and curriculum for K-12 computer science education, they look to integrate the foundational concepts of computational thinking (CT) into existing core subjects of elementary-age students. Research has shown the effectiveness of teaching CT elements (abstraction, generalization, decomposition, algorithmic thinking, debugging) using non-programming, unplugged approaches. These approaches address common barriers teachers face with lack of knowledge, familiarity, or technology tools. Picture books and graphic novels present an unexplored non-programming, unplugged resource for teachers to integrate computational thinking into their CT or CT-integrated lessons. This analysis examines 27 picture books and graphic novels published between 2015 and 2020 targeted to K-6 students for representation of computational thinking elements. Using the computational thinking curriculum framework for K-6, we identify the grade-level competencies of the CT elements featured in the books compared to the books’ target age groups. We compare grade-level competencies to interest level to identify each CT element representation as “foundational,” “on-target,” or “advanced.” We conclude that literature offers teachers a non-programming unplugged resource to expose students to CT and enhance CT and CT-integrated lessons, while also personalizing learning based on CT readiness and interest level. 
    more » « less