skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 20, 2026

Title: Intraspecific variability of social structure and linked foraging behavior in females of a widespread bat species (Phyllostomus hastatus)
Intraspecific variation in morphology and behavior is widespread, especially in species with large distribution ranges. This includes foraging which can vary according to the local resource landscape. How this may be linked to differences in social structure, especially in socially foraging species is less known. Greater spear-nosed bats are well known for their large repertoire of often highly complex social behaviors. In Trinidad, they form stable groups of unrelated females that recruit other members to temporally unpredictable flowering balsa trees. We compared these findings with a dataset of capture data, GPS tracks, and observations collected over six years in a colony in Panamá. We found profound differences in the foraging behavior and group stability ofPhyllostomus hastatusduring the dry season where social behaviors were expected. Female bats did not coordinate commutes to exploit distinct foraging resources as a group. Instead, females commuted individually to very distant foraging areas which overlapped between groups. Linked to this we found groups to be unstable in size over the short and long term. Our findings highlight the large intraspecific variation and indicate a strong influence of the local resource landscape and associated benefits of social foraging on the social structure in these bats and possibly many other animals.  more » « less
Award ID(s):
2217920
PAR ID:
10616104
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
PLOS ONE
Date Published:
Journal Name:
PLOS ONE
Volume:
20
Issue:
3
ISSN:
1932-6203
Page Range / eLocation ID:
e0313782
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Taborsky, Michael (Ed.)
    Abstract The juvenile period is a challenging life-history stage, especially in species with a high degree of fission–fusion dynamics, such as bottlenose dolphins, where maternal protection is virtually absent. Here, we examined how juvenile male and female bottlenose dolphins navigate this vulnerable period. Specifically, we examined their grouping patterns, activity budget, network dynamics, and social associations in the absence of adults. We found that juveniles live in highly dynamic groups, with group composition changing every 10 min on average. Groups were generally segregated by sex, and segregation was driven by same-sex preference rather than opposite-sex avoidance. Juveniles formed strong associations with select individuals, especially kin and same-sex partners, and both sexes formed cliques with their preferred partners. Sex-specific strategies in the juvenile period reflected adult reproductive strategies, in which the exploration of potential social partners may be more important for males (which form long-term alliances in adulthood) than females (which preferentially associate with kin in adulthood). Females spent more time alone and were more focused on foraging than males, but still formed close same-sex associations, especially with kin. Males cast a wider social net than females, with strong same-sex associations and many male associates. Males engaged in more affiliative behavior than females. These results are consistent with the social bonds and skills hypothesis and suggest that delayed sexual maturity in species with relational social complexity may allow individuals to assess potential associates and explore a complex social landscape without the risks associated with sexual maturity (e.g., adult reproductive competition; inbreeding). 
    more » « less
  2. Abstract In humans and chimpanzees, most intraspecific killing occurs during coalitionary intergroup conflict. In the closely related genus Gorilla, such behavior has not been described. We report three cases of multi-male, multi-female wild mountain gorilla ( G. beringei ) groups attacking extra-group males. The behavior was strikingly similar to reports in chimpanzees, but was never observed in gorillas until after a demographic transition left ~25% of the population living in large social groups with multiple (3+) males. Resource competition is generally considered a motivator of great apes’ (including humans) violent intergroup conflict, but mountain gorillas are non-territorial herbivores with low feeding competition. While adult male gorillas have a defensible resource (i.e. females) and nursing/pregnant females are likely motivated to drive off potentially infanticidal intruders, the participation of others (e.g. juveniles, sub-adults, cycling females) is harder to explain. We speculate that the potential for severe group disruption when current alpha males are severely injured or killed may provide sufficient motivation when the costs to participants are low. These observations suggest that the gorilla population’s recent increase in multi-male groups facilitated the emergence of such behavior, and indicates social structure is a key predictor of coalitionary aggression even in the absence of meaningful resource stress. 
    more » « less
  3. Cooperatively breeding species exhibit a range of social behaviours associated with different costs and benefits to group living, often in association with different environmental conditions. For example, recent phylogenetic studies have collectively shown that the evolution and distribution of cooperative breeding behaviour is related to the environment. However, little is known about how environmental variation may drive differences in social systems across populations within species, and how the relationship between environmental conditions and sociality may differ across species. Here, we examine variation in social group size along a steep environmental gradient for two congeneric cooperatively breeding species of fairywrens (Maluridae) and show that they exhibit opposing ecogeographic patterns. Purple-backed fairywrens, a species in which helpers increase group productivity, have larger groups in hot, dry environments and smaller groups in cool, wet environments. By contrast, superb fairywrens, a species with helpers that do not increase group productivity despite the presence of alloparental care, exhibit the opposite trend. We suggest differences in the costs and benefits of sociality contribute to these opposing ecogeographical patterns and demonstrate that comparisons of intraspecific patterns of social variation across species can provide insight into how ecology shapes social systems. 
    more » « less
  4. Abstract In the past decade, studies have demonstrated that urban and nonurban wildlife populations exhibit differences in foraging behavior and diet. However, little is known about how environmental heterogeneity shapes dietary variation of organisms within cities. We examined the vertebrate prey components of diets of coyotes (Canis latrans) in San Francisco to quantify territory‐ and individual‐level dietary differences and determine how within‐city variation in land cover and land use affects coyote diet. We genotyped fecal samples for individual coyote identification and used DNA metabarcoding to quantify diet composition and individual niche differentiation. The highest contributor to coyote diet overall was anthropogenic food followed by small mammals. The most frequently detected species were domestic chicken, pocket gopher (Thomomys bottae), domestic pig, and raccoon (Procyon lotor). Diet composition varied significantly across territories and among individuals, with territories explaining most of the variation. Within territories (i.e., family groups), the amount of dietary variation attributed to among‐individual differences increased with green space and decreased with impervious surface cover. The quantity of anthropogenic food in scats also was positively correlated with impervious surface cover, suggesting that coyotes consumed more human food in more urbanized territories. The quantity of invasive, human‐commensal rodents in the diet was positively correlated with the number of food services in a territory. Overall, our results revealed substantial intraspecific variation in coyote diet associated with urban landscape heterogeneity and point to a diversifying effect of urbanization on population diet. 
    more » « less
  5. All foraging animals face a trade-off: how much time should they invest in exploitation of known resources versus exploration to discover new resources? For group-living central place foragers, this balance is challenging. Due to the nature of their movement patterns, exploration and exploitation are often mutually exclusive, while the availability of social information may discourage individuals from exploring. To examine these trade-offs, we GPS-tracked groups of greater spear-nosed bats (Phyllostomus hastatus) from three colonies on Isla Colón, Panamá. During the dry season, when these omnivores forage on the nectar of unpredictable balsa flowers, bats consistently travelled long distances to remote, colony-specific foraging areas, bypassing flowering trees closer to their roosts. They continued using these areas in the wet season, when feeding on a diverse, presumably ubiquitous diet, but also visited other, similarly distant foraging areas. Foraging areas were shared within but not always between colonies. Our longitudinal dataset suggests that bats from each colony invest in long-distance commutes to socially learned shared foraging areas, bypassing other available food patches. Rather than exploring nearby resources, these bats exploit colony-specific foraging locations that appear to be culturally transmitted. These results give insight into how social animals might diverge from optimal foraging. 
    more » « less