skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2217920

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Substantial global attention is focused on how to reduce the risk of future pandemics. Reducing this risk requires investment in prevention, preparedness, and response. Although preparedness and response have received significant focus, prevention, especially the prevention of zoonotic spillover, remains largely absent from global conversations. This oversight is due in part to the lack of a clear definition of prevention and lack of guidance on how to achieve it. To address this gap, we elucidate the mechanisms linking environmental change and zoonotic spillover using spillover of viruses from bats as a case study. We identify ecological interventions that can disrupt these spillover mechanisms and propose policy frameworks for their implementation. Recognizing that pandemics originate in ecological systems, we advocate for integrating ecological approaches alongside biomedical approaches in a comprehensive and balanced pandemic prevention strategy. 
    more » « less
  2. Intraspecific variation in morphology and behavior is widespread, especially in species with large distribution ranges. This includes foraging which can vary according to the local resource landscape. How this may be linked to differences in social structure, especially in socially foraging species is less known. Greater spear-nosed bats are well known for their large repertoire of often highly complex social behaviors. In Trinidad, they form stable groups of unrelated females that recruit other members to temporally unpredictable flowering balsa trees. We compared these findings with a dataset of capture data, GPS tracks, and observations collected over six years in a colony in Panamá. We found profound differences in the foraging behavior and group stability ofPhyllostomus hastatusduring the dry season where social behaviors were expected. Female bats did not coordinate commutes to exploit distinct foraging resources as a group. Instead, females commuted individually to very distant foraging areas which overlapped between groups. Linked to this we found groups to be unstable in size over the short and long term. Our findings highlight the large intraspecific variation and indicate a strong influence of the local resource landscape and associated benefits of social foraging on the social structure in these bats and possibly many other animals. 
    more » « less
    Free, publicly-accessible full text available March 20, 2026
  3. All foraging animals face a trade-off: how much time should they invest in exploitation of known resources versus exploration to discover new resources? For group-living central place foragers, this balance is challenging. Due to the nature of their movement patterns, exploration and exploitation are often mutually exclusive, while the availability of social information may discourage individuals from exploring. To examine these trade-offs, we GPS-tracked groups of greater spear-nosed bats (Phyllostomus hastatus) from three colonies on Isla Colón, Panamá. During the dry season, when these omnivores forage on the nectar of unpredictable balsa flowers, bats consistently travelled long distances to remote, colony-specific foraging areas, bypassing flowering trees closer to their roosts. They continued using these areas in the wet season, when feeding on a diverse, presumably ubiquitous diet, but also visited other, similarly distant foraging areas. Foraging areas were shared within but not always between colonies. Our longitudinal dataset suggests that bats from each colony invest in long-distance commutes to socially learned shared foraging areas, bypassing other available food patches. Rather than exploring nearby resources, these bats exploit colony-specific foraging locations that appear to be culturally transmitted. These results give insight into how social animals might diverge from optimal foraging. 
    more » « less
  4. Africa experiences frequent emerging disease outbreaks among humans, with bats often proposed as zoonotic pathogen hosts. We comprehensively reviewed virus–bat findings from papers published between 1978 and 2020 to evaluate the evidence that African bats are reservoir and/or bridging hosts for viruses that cause human disease. We present data from 162 papers (of 1322) with original findings on (1) numbers and species of bats sampled across bat families and the continent, (2) how bats were selected for study inclusion, (3) if bats were terminally sampled, (4) what types of ecological data, if any, were recorded and (5) which viruses were detected and with what methodology. We propose a scheme for evaluating presumed virus–host relationships by evidence type and quality, using the contrasting available evidence for Orthoebolavirus versus Orthomarburgvirus as an example. We review the wording in abstracts and discussions of all 162 papers, identifying key framing terms, how these refer to findings, and how they might contribute to people's beliefs about bats. We discuss the impact of scientific research communication on public perception and emphasize the need for strategies that minimize human–bat conflict and support bat conservation. Finally, we make recommendations for best practices that will improve virological study metadata. 
    more » « less