skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Computing cohomology groups that classify bundles of strongly self-absorbing C∗-algebras
Locally trivial bundles of [Formula: see text]-algebras with fiber [Formula: see text] for a strongly self-absorbing [Formula: see text]-algebra [Formula: see text] over a finite CW-complex [Formula: see text] form a group [Formula: see text] that is the first group of a cohomology theory [Formula: see text]. In this paper, we compute these groups by expressing them in terms of ordinary cohomology and connective [Formula: see text]-theory. To compare the [Formula: see text]-algebraic version of [Formula: see text] with its classical counterpart we also develop a uniqueness result for the unit spectrum of complex periodic topological [Formula: see text]-theory.  more » « less
Award ID(s):
2247334
PAR ID:
10575004
Author(s) / Creator(s):
; ;
Publisher / Repository:
World Scientific
Date Published:
Journal Name:
Journal of Topology and Analysis
ISSN:
1793-5253
Page Range / eLocation ID:
1 to 34
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We investigate constructions of higher arity self-distributive operations, and give relations between cohomology groups corresponding to operations of different arities. For this purpose we introduce the notion of mutually distributive [Formula: see text]-ary operations generalizing those for the binary case, and define a cohomology theory labeled by these operations. A geometric interpretation in terms of framed links is described, with the scope of providing algebraic background of constructing [Formula: see text]-cocycles for framed link invariants. This theory is also studied in the context of symmetric monoidal categories. Examples from Lie algebras, coalgebras and Hopf algebras are given. 
    more » « less
  2. Let [Formula: see text] be a Baumslag–Solitar group and let [Formula: see text] be a complex reductive algebraic group with maximal compact subgroup [Formula: see text]. We show that, when [Formula: see text] and [Formula: see text] are relatively prime with distinct absolute values, there is a strong deformation retraction of [Formula: see text] onto [Formula: see text]. 
    more » « less
  3. null (Ed.)
    Let [Formula: see text] be a group acting properly and by isometries on a metric space [Formula: see text]; it follows that the quotient or orbit space [Formula: see text] is also a metric space. We study the Vietoris–Rips and Čech complexes of [Formula: see text]. Whereas (co)homology theories for metric spaces let the scale parameter of a Vietoris–Rips or Čech complex go to zero, and whereas geometric group theory requires the scale parameter to be sufficiently large, we instead consider intermediate scale parameters (neither tending to zero nor to infinity). As a particular case, we study the Vietoris–Rips and Čech thickenings of projective spaces at the first scale parameter where the homotopy type changes. 
    more » « less
  4. We give examples of (i) a simple theory with a formula (with parameters) which does not fork over [Formula: see text] but has [Formula: see text]-measure 0 for every automorphism invariant Keisler measure [Formula: see text] and (ii) a definable group [Formula: see text] in a simple theory such that [Formula: see text] is not definably amenable, i.e. there is no translation invariant Keisler measure on [Formula: see text]. We also discuss paradoxical decompositions both in the setting of discrete groups and of definable groups, and prove some positive results about small theories, including the definable amenability of definable groups. 
    more » « less
  5. In this paper, we develop the theory of residually finite rationally [Formula: see text] (RFR[Formula: see text]) groups, where [Formula: see text] is a prime. We first prove a series of results about the structure of finitely generated RFR[Formula: see text] groups (either for a single prime [Formula: see text], or for infinitely many primes), including torsion-freeness, a Tits alternative, and a restriction on the BNS invariant. Furthermore, we show that many groups which occur naturally in group theory, algebraic geometry, and in 3-manifold topology enjoy this residual property. We then prove a combination theorem for RFR[Formula: see text] groups, which we use to study the boundary manifolds of algebraic curves [Formula: see text] and in [Formula: see text]. We show that boundary manifolds of a large class of curves in [Formula: see text] (which includes all line arrangements) have RFR[Formula: see text] fundamental groups, whereas boundary manifolds of curves in [Formula: see text] may fail to do so. 
    more » « less