Abstract Chaperones are essential to the co-translational folding of most proteins. However, the principles of co-translational chaperone interaction throughout the proteome are poorly understood, as current methods are restricted to few substrates and cannot capture nascent protein folding or chaperone binding sites, precluding a comprehensive understanding of productive and erroneous protein biosynthesis. Here, by integrating genome-wide selective ribosome profiling, single-molecule tools, and computational predictions using AlphaFold we show that the binding of the mainE. colichaperones involved in co-translational folding, Trigger Factor (TF) and DnaK correlates with “unsatisfied residues” exposed on nascent partial folds – residues that have begun to form tertiary structure but cannot yet form all native contacts due to ongoing translation. This general principle allows us to predict their co-translational binding across the proteome based on sequence only, which we verify experimentally. The results show that TF and DnaK stably bind partially folded rather than unfolded conformers. They also indicate a synergistic action of TF guiding intra-domain folding and DnaK preventing premature inter-domain contacts, and reveal robustness in the larger chaperone network (TF, DnaK, GroEL). Given the complexity of translation, folding, and chaperone functions, our predictions based on general chaperone binding rules indicate an unexpected underlying simplicity.
more »
« less
This content will become publicly available on November 18, 2025
Response and adaptation of the transcriptional heat shock response to pressure
IntroductionThe molecular mechanisms underlying pressure adaptation remain largely unexplored, despite their significance for understanding biological adaptation and improving sterilization methods in the food and beverage industry. The heat shock response leads to a global stabilization of the proteome. Prior research suggested that the heat shock regulon may exhibit a transcriptional response to high-pressure stress. MethodsIn this study, we investigated the pressure-dependent heat shock response inE. colistrains using plasmid-borne green fluorescent protein (GFP) promoter fusions and fluorescence fluctuation microscopy. ResultsWe quantitatively confirm that key heat shock genes-rpoH,rpoE,dnaK, andgroEL- are transcriptionally upregulated following pressure shock in both piezosensitiveEscherichia coliand a more piezotolerant laboratory-evolved strain, AN62. Our quantitative imaging results provide the first single cell resolution measurements for both the heat shock and pressure shock transcriptional responses, revealing not only the magnitude of the responses, but also the biological variance involved. Moreover, our results demonstrate distinct responses in the pressure-adapted strain. Specifically,PgroELis upregulated more thanPdnaKin AN62, while the reverse is true in the parental strain. Furthermore, unlike in the parental strain, the pressure-induced upregulation ofPrpoEis highly stochastic in strain AN62, consistent with a strong feedback mechanism and suggesting that RpoE could act as a pressure sensor. DiscussionDespite its capacity to grow at pressures up to 62 MPa, the AN62 genome shows minimal mutations, with notable single nucleotide substitutions in genes of the transcriptionally importantbsubunit of RNA polymerase and the Rho terminator. In particular, the mutation in RNAP is one of a cluster of mutations known to confer rifampicin resistance toE. colivia modification of RNAP pausing and termination efficiency. The observed differences in the pressure and heat shock responses between the parental MG1655 strain and the pressure-adapted strain AN62 could arise in part from functional differences in their RNAP molecules.
more »
« less
- Award ID(s):
- 2019455
- PAR ID:
- 10616190
- Publisher / Repository:
- frontiersin.org
- Date Published:
- Journal Name:
- Frontiers in Microbiology
- Volume:
- 15
- ISSN:
- 1664-302X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
An adaptive biomolecular condensation response is conserved across environmentally divergent speciesAbstract Cells must sense and respond to sudden maladaptive environmental changes—stresses—to survive and thrive. Across eukaryotes, stresses such as heat shock trigger conserved responses: growth arrest, a specific transcriptional response, and biomolecular condensation of protein and mRNA into structures known as stress granules under severe stress. The composition, formation mechanism, adaptive significance, and even evolutionary conservation of these condensed structures remain enigmatic. Here we provide a remarkable view into stress-triggered condensation, its evolutionary conservation and tuning, and its integration into other well-studied aspects of the stress response. Using three morphologically near-identical budding yeast species adapted to different thermal environments and diverged by up to 100 million years, we show that proteome-scale biomolecular condensation is tuned to species-specific thermal niches, closely tracking corresponding growth and transcriptional responses. In each species, poly(A)-binding protein—a core marker of stress granules—condenses in isolation at species-specific temperatures, with conserved molecular features and conformational changes modulating condensation. From the ecological to the molecular scale, our results reveal previously unappreciated levels of evolutionary selection in the eukaryotic stress response, while establishing a rich, tractable system for further inquiry.more » « less
-
Abstract Under synchronized conidiation, over 2500 gene products show differential expression, including transcripts for bothbrlAandabaA, which increase steadily over time. In contrast, during wall-stress induced by the echinocandin micafungin, thebrlAtranscript is upregulated while theabaAtranscript is not. In addition, whenmpkA(last protein kinase in the cell wall integrity signaling pathway) is deleted,brlAexpression is not upregulated in response to wall stress. Together, these data imply BrlA may play a role in a cellular stress-response which is independent of the canonical BrlA-mediated conidiation pathway. To test this hypothesis, we performed a genome-wide search and found 332 genes with a putative BrlA response element (BRE) in their promoter region. From this set, we identified 28 genes which were differentially expressed in response to wall-stress, but not during synchronized conidiation. This set included seven gene products whose homologues are involved in transmembrane transport and 14 likely to be involved in secondary metabolite biosynthesis. We selected six of these genes for further examination and find that they all show altered expression behavior in thebrlAdeletion strain. Together, these data support the idea that BrlA plays a role in various biological processes outside asexual development. ImportanceTheAspergillus nidulanstranscription factor BrlA is widely accepted as a master regulator of conidiation. Here, we show that in addition to this function BrlA appears to play a role in responding to cell-wall stress. We note that this has not been observed outsideA. nidulans. Further, BrlA-mediated conidiation is highly conserved acrossAspergillusspecies, so this new functionality is likely relevant in otherAspergilli. We identified several transmembrane transporters that have altered transcriptional responses to cell-wall stress in abrlAdeletion mutant. Based on our observation, together with what is known about thebrlAgene locus’ regulation, we identifybrlAβas the likely intermediary in function ofbrlAin the response to cell-wall stress.more » « less
-
Svensson, Sarah L (Ed.)ABSTRACT In starvingBacillus subtilisbacteria,the initiation of two survival programs—biofilm formation and sporulation—is controlled by the same phosphorylated master regulator, Spo0A~P. Its gene,spo0A,is transcribed from two promoters, Pvand Ps,that are, respectively, regulated by RNA polymerase (RNAP) holoenzymes bearing σAand σH. Notably, transcription is directly autoregulated by Spo0A~P binding sites known as 0A1, 0A2, and 0A3 box, located in between the two promoters. It remains unclear whether, at the onset of starvation, these boxes activate or repressspo0Aexpression, and whether the Spo0A~P transcriptional feedback plays a role in the increase inspo0Aexpression. Based on the experimental data of the promoter activities under systematic perturbation of the promoter architecture, we developed a biophysical model of transcriptional regulation ofspo0Aby Spo0A~P binding to each of the 0A boxes. The model predicts that Spo0A~P binding to its boxes does not affect the RNAP recruitment to the promoters but instead affects the transcriptional initiation rate. Moreover, the effects of Spo0A~P binding to 0A boxes are mainly repressive and saturated early at the onset of starvation. Therefore, the increase inspo0Aexpression is mainly driven by the increase in RNAP holoenzyme levels. Additionally, we reveal that Spo0A~P affinity to 0A boxes is strongest at 0A3 and weakest at 0A2 and that there are attractive forces between the occupied 0A boxes. Our findings, in addition to clarifying how the sporulation master regulator is controlled, offer a framework to predict regulatory outcomes of complex gene-regulatory mechanisms. IMPORTANCECell differentiation is often critical for survival. In bacteria, differentiation decisions are controlled by transcriptional master regulators under transcriptional feedback control. Therefore, understanding how master regulators are transcriptionally regulated is required to understand differentiation. However, in many cases, the underlying regulation is complex, with multiple transcription factor binding sites and multiple promoters, making it challenging to dissect the exact mechanisms. Here, we address this problem for theBacillus subtilismaster regulator Spo0A. Using a biophysical model, we quantitatively characterize the effect of individual transcription factor binding sites on eachspo0Apromoter. Furthermore, the model allows us to identify the specific transcription step that is affected by transcription factor binding. Such a model is promising for the quantitative study of a wide range of master regulators involved in transcriptional feedback.more » « less
-
IntroductionThe rise in extended-spectrum beta-lactamase (ESBL)-producingEnterobacteriaceaein dairy cattle farms poses a risk to human health as they can spread to humans through the food chain, including raw milk. This study was designed to determine the status, antimicrobial resistance, and pathogenic potential of ESBL-producing -E. coliand -Klebsiellaspp. isolates from bulk tank milk (BTM). MethodsThirty-three BTM samples were collected from 17 dairy farms and screened for ESBL-E. coliand -Klebsiellaspp. on CHROMagar ESBL plates. All isolates were confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and subjected to antimicrobial susceptibility testing and whole genome sequencing (WGS). ResultsTen presumptive ESBL-producing bacteria, eightE. coli, and twoK. pneumoniaewere isolated. The prevalence of ESBL-E. coliand -K. pneumoniaein BTM was 21.2% and 6.1%, respectively. ESBL-E. coliwere detected in 41.2% of the study farms. Seven of the ESBL-E. coliisolates were multidrug resistant (MDR). The two ESBL-producingK. pneumoniaeisolates were resistant to ceftriaxone. Seven ESBL-E. colistrains carry theblaCTX-Mgene, and five of them co-harboredblaTEM-1. ESBL-E. colico-harboredblaCTX-Mwith other resistance genes, includingqnrB19,tet(A),aadA1,aph(3’’)-Ib,aph(6)-Id),floR,sul2, and chromosomal mutations (gyrA, gyrB, parC, parE, and pmrB). MostE. coliresistance genes were associated with mobile genetic elements, mainly plasmids. Six sequence types (STs) ofE. coliwere detected. All ESBL-E. coliwere predicted to be pathogenic to humans. Four STs (three ST10 and ST69) were high-risk clones ofE. coli. Up to 40 virulence markers were detected in allE. coliisolates. One of theK. pneumoniaewas ST867; the other was novel strain.K. pneumoniaeisolates carried three types of beta-lactamase genes (blaCTX-M,blaTEM-1andblaSHV). The novelK. pneumoniaeST also carried a novel IncFII(K) plasmid ST. ConclusionDetection of high-risk clones of MDR ESBL-E. coliand ESBL-K. pneumoniaein BTM indicates that raw milk could be a reservoir of potentially zoonotic ESBL-E. coliand -K. pneumoniae.more » « less
An official website of the United States government
