Abstract Electrochemical CO2reduction (CO2RR) on copper (Cu) shows promise for higher‐value products beyond CO. However, challenges such as the limited CO2solubility, high overpotentials, and the competing hydrogen evolution reaction (HER) in aqueous electrolytes hinder the practical realization. We propose a functionalized ionic liquid (IL) which generates ion‐CO2adducts and a hydrogen bond donor (HBD) upon CO2absorption to modulate CO2RR on Cu in a non‐aqueous electrolyte. As revealed by transient voltammetry, electrochemical impedance spectroscopy (EIS), and in situ surface‐enhanced Raman spectroscopy (SERS) complemented with image charge augmented quantum‐mechanical/molecular mechanics (IC‐QM/MM) computations, a unique microenvironment is constructed. In this microenvironment, the catalytic activity is primarily governed by the IL and HBD concentrations; former controlling the double layer thickness and the latter modulating the local proton availability. This translates to ample CO2availability, reduced overpotential, and suppressed HER where C4products are obtained. This study deepens the understanding of electrolyte effects in CO2RR and the role of IL ions towards electrocatalytic microenvironment design.
more »
« less
Electrolyte Anions Suppress Hydrogen Generation in Electrochemical CO Reduction on Cu
In this study, we employed electrochemical‐mass spectrometry (EC‐MS) to elucidate the role of halide anions in electrochemical CO2and CO reduction. We found that the undesired hydrogen evolution reaction (HER) was significantly suppressed by the anion used. Specifically, the rates of H2production decreased in the order KF > KCl > KI, meaning that I−most strongly suppressed HER. Interestingly, CO reduction products showed an inverse relationship to HER, with KI leading to the highest rate of CO reduction. By pairing our experimental findings with classical molecular dynamics simulations, we propose a mechanism wherein halide anions influence the dynamic interplay between CO reduction and HER by modulating the competition of H* and CO* for active sites on the Cu surface. We propose that this interaction is enabled by the interfacial concentration of K+being greater in the presence of F−than in I−. Our results highlight the need to more broadly consider the properties of ions at electrocatalytic interfaces and they point to thus far underappreciated avenues to optimize hydrocarbon production while suppressing hydrogen evolution.
more »
« less
- Award ID(s):
- 2245375
- PAR ID:
- 10616201
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 64
- Issue:
- 10
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Copper-based catalyst is uniquely positioned to catalyze the hydrocarbon formations through electrochemical CO2reduction. The catalyst design freedom is limited for alloying copper with H-affinitive elements represented by platinum group metals because the latter would easily drive the hydrogen evolution reaction to override CO2reduction. We report an adept design of anchoring atomically dispersed platinum group metal species on both polycrystalline and shape-controlled Cu catalysts, which now promote targeted CO2reduction reaction while frustrating the undesired hydrogen evolution reaction. Notably, alloys with similar metal formulations but comprising small platinum or palladium clusters would fail this objective. With an appreciable amount of CO-Pd1moieties on copper surfaces, facile CO*hydrogenation to CHO*or CO-CHO*coupling is now viable as one of the main pathways on Cu(111) or Cu(100) to selectively produce CH4or C2H4through Pd-Cu dual-site pathways. The work broadens copper alloying choices for CO2reduction in aqueous phases.more » « less
-
Electrochemical conversion of CO 2 into value-added chemicals continues to draw interest in renewable energy applications. Although many metal catalysts are active in the CO 2 reduction reaction (CO 2 RR), their reactivity and selectivity are nonetheless hindered by the competing hydrogen evolution reaction (HER). The competition of the HER and CO 2 RR stems from the energy scaling relationship between their reaction intermediates. Herein, we predict that bimetallic monolayer electrocatalysts (BMEs) – a monolayer of transition metals on top of extended metal substrates – could produce dual-functional active sites that circumvent the scaling relationship between the adsorption energies of HER and CO 2 RR intermediates. The antibonding interaction between the adsorbed H and the metal substrate is revealed to be responsible for circumventing the scaling relationship. Based on extensive density functional theory (DFT) calculations, we identify 11 BMEs which are highly active and selective toward the formation of formic acid with a much suppressed HER. The H–substrate antibonding interaction also leads to superior CO 2 RR performance on monolayer-coated penta-twinned nanowires.more » « less
-
Ruthenium has emerged as a promising substitute for platinum toward the hydrogen evolution/oxidation reaction (HER/HOR). Herein, ruthenium/carbon composites are prepared by magnetic induction heating (300 A, 10 s) of RuCl3, RuBr3or RuI3loaded on hollow N‐doped carbon cages (HNC). The HNC‐RuCl3‐300A sample consists of Ru nanoparticles (dia. 1.96 nm) and abundant Cl residues. HNC‐RuBr3‐300A possesses a larger nanoparticle size (≈19.36 nm) and lower content of Br residues. HNC‐RuI3‐300A contains only bulk‐like Ru agglomerates with a minimal amount of I residues, due to reduced Ru‐halide bonding interactions. Among these, HNC‐RuCl3‐300A exhibits the best HER activity in alkaline media, with a low overpotential of only −26 mV to reach 10 mA cm−2, even outperforming Pt/C, and can be used as the cathode catalyst for anion exchange membrane water electrolyzer (along with commercial RuO2as the anode catalyst), producing 0.5 A cm−2at 1.88 V for up to 100 h, a performance markedly better than that with Pt/C. HNC‐RuCl3‐300A also exhibits the best HOR activity, with a half‐wave potential (+18 mV) even lower than that of Pt/C (+35 mV). These activities are ascribed to the combined contributions of small Ru nanoparticles and Ru‐to‐halide charge transfer that weaken H adsorption.more » « less
-
The electrocatalytic nitrogen reduction reaction (NRR) is of significant interest as an environmentally friendly method for NH 3 production for agricultural and clean energy applications. Selectivity of NRR vis-à-vis the hydrogen evolution reaction (HER), however, is thought to adversely impact many potential catalysts, including Earth-abundant transition metal oxynitrides. Relative HER/NRR selectivities are therefore directly compared for two transition metal oxynitrides with different metal oxophilicities—Co and V. Electrocatalytic current–potential measurements, operando fluorescence, absorption, and GC measurements of H 2 and NH 3 production, ex situ X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations are combined to directly compare NRR and HER activities under identical reaction conditions. Results show that cobalt oxynitrides – with Co primarily in the Co( ii ) oxidation state – are NRR active at pH 10, with electrochemical reduction of both lattice nitrogen and dissolved N 2 , the latter occurring without N incorporation into the lattice. Removal of lattice N then yields Co( ii ) oxide, which is still NRR active. These results are complemented by calculations showing that N 2 binding at Co( ii ) sites is energetically favored over binding at Co( iii ) sites. GC analysis demonstrates that H 2 production occurs in concert with ammonia production but at a far greater rate. In contrast, vanadium oxynitride films are HER inactive under the same (pH 10) conditions, as well as at pH 7, but are NRR active at pH 7. DFT calculations indicate that a major difference in the two materials is hindered O–H dissociation of H 2 O adsorbed at O-ligated Co vs. V cation centers. The combined studies indicate significant variation in HER vs. NRR selectivity as a function of employed transition metal oxynitrides, as well as different HER mechanisms in V and Co oxynitrides.more » « less
An official website of the United States government

