skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 4, 2025

Title: High-Fidelity Cellular Network Control-Plane Traffic Generation without Domain Knowledge
With rapid evolution of mobile core network (MCN) architectures, large-scale control-plane traffic (CPT) traces are critical to studying MCN design and performance optimization by the R&D community. The prior-art control-plane traffic generator SMM heavily relies on domain knowledge which requires re-design as the domain evolves. In this work, we study the feasibility of developing a high-fidelity MCN control plane traffic generator by leveraging generative ML models. We identify key challenges in synthesizing high-fidelity CPT including generic (to data-plane) requirements such as multimodality feature relationships and unique requirements such as stateful semantics and long-term (time-of-day) data variations. We show state-of-the-art, generative adversarial network (GAN)-based approaches shown to work well for data-plane traffic cannot meet these fidelity requirements of CPT, and develop a transformer-based model, CPT-GPT, that accurately captures complex dependencies among the samples in each traffic stream (control events by the same UE) without the need for GAN. Our evaluation of CPT-GPT on a large-scale control-plane traffic trace shows that (1) it does not rely on domain knowledge yet synthesizes control-plane traffic with comparable fidelity as SMM; (2) compared to the prior-art GAN-based approach, it reduces the fraction of streams that violate stateful semantics by two orders of magnitude, the max y-distance of sojourn time distributions of streams by 16.0%, and the transfer learning time in deriving new hourly models by 3.36×.  more » « less
Award ID(s):
2312834
PAR ID:
10616436
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400705922
Page Range / eLocation ID:
530 to 544
Subject(s) / Keyword(s):
4G/5G mobile core network control plane traffic modeling and synthesis
Format(s):
Medium: X
Location:
Madrid Spain
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose an approach to generate realistic and high-fidelity stock market data based on generative adversarial networks (GANs). Our Stock-GAN model employs a conditional Wasserstein GAN to capture history dependence of orders. The generator design includes specially crafted aspects including components that approximate the market's auction mechanism, augmenting the order history with order-book constructions to improve the generation task. We perform an ablation study to verify the usefulness of aspects of our network structure. We provide a mathematical characterization of distribution learned by the generator. We also propose statistics to measure the quality of generated orders. We test our approach with synthetic and actual market data, compare to many baseline generative models, and find the generated data to be close to real data. 
    more » « less
  2. One of the main roles of the Domain Name System (DNS) is to map domain names to IP addresses. Despite the importance of this function, DNS traffic often passes without being analyzed, thus making the DNS a center of attacks that keep evolving and growing. Software-based mitigation approaches and dedicated state-of-the-art firewalls can become a bottleneck and are subject to saturation attacks, especially in high-speed networks. The emerging P4-programmable data plane can implement a variety of network security mitigation approaches at high-speed rates without disrupting legitimate traffic. This paper describes a system that relies on programmable switches and their stateful processing capabilities to parse and analyze DNS traffic solely in the data plane, and subsequently apply security policies on domains according to the network administrator. In particular, Deep Packet Inspection (DPI) is leveraged to extract the domain name consisting of any number of labels and hence, apply filtering rules (e.g., blocking malicious domains). Evaluation results show that the proposed approach can parse more domain labels than any state-of-the-art P4-based approach. Additionally, a significant performance gain is attained when comparing it to a traditional software firewall -pfsense-, in terms of throughput, delay, and packet loss. The resources occupied by the implemented P4 program are minimal, which allows for more security functionalities to be added. 
    more » « less
  3. Given historical traffic distributions and associated urban conditions observed in a city, the conditional urban traffic estimation problem aims at estimating realistic future projections of the traffic under a set of new urban conditions, e.g., new bus routes, rainfall intensity, and travel demands. The problem is important in reducing traffic congestion, improving public transportation efficiency, and facilitating urban planning. However, solving this problem is challenging due to the strong spatial dependencies of traffic patterns and the complex relations between the traffic and urban conditions. Recently, we proposed a Complex-Condition-Controlled Generative Adversarial Network C3-GAN, which tackles both of the challenges and solves the urban traffic estimation problem under various complex conditions by adding a fixed embedding network and an inference network on top of the standard conditional GAN model. The randomly chosen embedding network transforms the complex conditions to latent vectors, and the inference network enhances the connections between the embedded vectors and the traffic data. However, a randomly chosen embedding network cannot always successfully extract features of complex urban conditions, which indicates C3-GAN is unable to uniquely map different urban conditions to proper latent distributions. Thus, C3-GAN would fail in certain traffic estimation tasks. Besides, C3-GAN is hard to train due to vanishing gradients and mode collapse problems. To address these issues, in this article, we extend our prior work by introducing a new deep generative model, namely, C3-GAN+, which significantly improves the estimation performance and model stability. C3-GAN+ has new objective, architecture, and training algorithm. The new objective applies Wasserstein loss to the conditional generation case to encourage stable training. Shared convolutional layers between the discriminator and the inference network help to capture spatial dependencies of traffic more efficiently, part of the shared convolutional layers are used to update the embedding network periodically aiming to encourage good representation and avoid model divergence. Extensive experiments on real-world datasets demonstrate that our C3-GAN+ produces high-quality traffic estimations and outperforms state-of-the-art baseline methods. 
    more » « less
  4. Given an urban development plan and the historical traffic observations over the road network, the Conditional Urban Traffic Estimation problem aims to estimate the resulting traffic status prior to the deployment of the plan. This problem is of great importance to urban development and transportation management, yet is very challenging because the plan would change the local travel demands drastically and the new travel demand pattern might be unprecedented in the historical data. To tackle these challenges, we propose a novel Conditional Urban Traffic Generative Adversarial Network (Curb-GAN), which provides traffic estimations in consecutive time slots based on different (unprecedented) travel demands, thus enables urban planners to accurately evaluate urban plans before deploying them. The proposed Curb-GAN adopts and advances the conditional GAN structure through a few novel ideas: (1) dealing with various travel demands as the "conditions" and generating corresponding traffic estimations, (2) integrating dynamic convolutional layers to capture the local spatial auto-correlations along the underlying road networks, (3) employing self-attention mechanism to capture the temporal dependencies of the traffic across different time slots. Extensive experiments on two real-world spatio-temporal datasets demonstrate that our Curb-GAN outperforms major baseline methods in estimation accuracy under various conditions and can produce more meaningful estimations. 
    more » « less
  5. null (Ed.)
    The COVID-19 pandemic has posed grand challenges to policy makers, raising major social conflicts between public health and economic resilience. Policies such as closure or reopen of businesses are made based on scientific projections of infection risks obtained from infection dynamics models. While most parameters in infection dynamics models can be set using domain knowledge of COVID-19, a key parameter - human mobility - is often challenging to estimate due to complex social contexts and limited training data under escalating COVID-19 conditions. To address these challenges, we formulate the problem as a spatio-temporal data generation problem and propose COVID-GAN, a spatio-temporal Conditional Generative Adversarial Network, to estimate mobility (e.g., changes in POI visits) under various real-world conditions (e.g., COVID-19 severity, local policy interventions) integrated from multiple data sources. We also introduce a domain-constraint correction layer in the generator of COVID-GAN to reduce the difficulty of learning. Experiments using urban mobility data derived from cell phone records and census data show that COVID-GAN can well approximate real-world human mobility responses, and that the proposed domain-constraint based correction can greatly improve solution quality. 
    more » « less