skip to main content


Title: Curb-GAN: Conditional Urban Traffic Estimation through Spatio-Temporal Generative Adversarial Networks
Given an urban development plan and the historical traffic observations over the road network, the Conditional Urban Traffic Estimation problem aims to estimate the resulting traffic status prior to the deployment of the plan. This problem is of great importance to urban development and transportation management, yet is very challenging because the plan would change the local travel demands drastically and the new travel demand pattern might be unprecedented in the historical data. To tackle these challenges, we propose a novel Conditional Urban Traffic Generative Adversarial Network (Curb-GAN), which provides traffic estimations in consecutive time slots based on different (unprecedented) travel demands, thus enables urban planners to accurately evaluate urban plans before deploying them. The proposed Curb-GAN adopts and advances the conditional GAN structure through a few novel ideas: (1) dealing with various travel demands as the "conditions" and generating corresponding traffic estimations, (2) integrating dynamic convolutional layers to capture the local spatial auto-correlations along the underlying road networks, (3) employing self-attention mechanism to capture the temporal dependencies of the traffic across different time slots. Extensive experiments on two real-world spatio-temporal datasets demonstrate that our Curb-GAN outperforms major baseline methods in estimation accuracy under various conditions and can produce more meaningful estimations.  more » « less
Award ID(s):
1657350 1942680 1831140
NSF-PAR ID:
10195299
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
Page Range / eLocation ID:
842 to 852
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Estimating the travel time for a given path is a fundamental problem in many urban transportation systems. However, prior works fail to well capture moving behaviors embedded in paths and thus do not estimate the travel time accurately. To fill in this gap, in this work, we propose a novel neural network framework, namely Deep Image-based Spatio-Temporal network (DeepIST), for travel time estimation of a given path. The novelty of DeepIST lies in the following aspects:1) we propose to plot a path as a sequence of -generalized images"which include sub-paths along with additional information, such as traffic conditions, road network and traffic signals, in order to harness the power of convolutional neural network model (CNN)on image processing; 2) we design a novel two-dimensional CNN, namely PathCNN, to extract spatial patterns for lines in images by regularization and adopting multiple pooling methods; and 3) we apply a one-dimensional CNN to capture temporal patterns among the spatial patterns along the paths for the estimation. Empirical results show that DeepIST soundly outperforms the state-of-the-art travel time estimation models by 24.37% to 25.64% of mean absolute error (MAE) in multiple large-scale real-world datasets. 
    more » « less
  2. Public transits, such as buses and subway lines, offer affordable ride-sharing services and reduce the road network traffic, thus have significant impacts in mitigating the urban traffic congestion problem. However, it is non-trivial to evaluate a new transit plan, such as a new bus route or a new subway line, of its future ridership prior to actual deployment, since the travel preferences of passengers along the planned routes may vary. In this paper, we make the first attempt to model passengers' preferences of making various transit choices using a Markov Decision Process (MDP). Moreover, we develop a novel inverse preference learning algorithm to infer the passengers' preferences and predict the future human behavior changes, e.g., ridership, of a new urban transit plan before its deployment. We validate our proposed framework using a unique real-world dataset (from Shenzhen, China) with three subway lines opened during the data time span. With the data collected from both before and after the transit plan deployments, Our evaluation results demonstrated that the proposed framework can predict the ridership with only 19.8% relative error, which is 23%-51% lower than other baseline approaches. 
    more » « less
  3. Imputing missing data is a critical task in data-driven intelligent transportation systems. During recent decades there has been a considerable investment in developing various types of sensors and smart systems, including stationary devices (e.g., loop detectors) and floating vehicles equipped with global positioning system (GPS) trackers to collect large-scale traffic data. However, collected data may not include observations from all road segments in a traffic network for different reasons, including sensor failure, transmission error, and because GPS-equipped vehicles may not always travel through all road segments. The first step toward developing real-time traffic monitoring and disruption prediction models is to estimate missing values through a systematic data imputation process. Many of the existing data imputation methods are based on matrix completion techniques that utilize the inherent spatiotemporal characteristics of traffic data. However, these methods may not fully capture the clustered structure of the data. This paper addresses this issue by developing a novel data imputation method using PARATUCK2 decomposition. The proposed method captures both spatial and temporal information of traffic data and constructs a low-dimensional and clustered representation of traffic patterns. The identified spatiotemporal clusters are used to recover network traffic profiles and estimate missing values. The proposed method is implemented using traffic data in the road network of Manhattan in New York City. The performance of the proposed method is evaluated in comparison with two state-of-the-art benchmark methods. The outcomes indicate that the proposed method outperforms the existing state-of-the-art imputation methods in complex and large-scale traffic networks.

     
    more » « less
  4. The scaling relations between city attributes and population are emergent and ubiquitous aspects of urban growth. Quantifying these relations and understanding their theoretical foundation, however, is difficult due to the challenge of defining city boundaries and a lack of historical data to study city dynamics over time and space. To address this issue, we analyze scaling between city infrastructure and population across 857 metropolitan areas in the conterminous United States over an unprecedented 115 years (1900–2015) using dasymetrically refined historical population estimates, historical urban road network models, and multi-temporal settlement data to define dynamic city boundaries. We demonstrate that urban scaling exponents closely match theoretical models over a century. Despite some close quantitative agreement with theory, the empirical scaling relations unexpectedly vary across regions. Our analysis of scaling coefficients, meanwhile, reveals that contemporary cities use more developed land and kilometers of road than cities of similar population in 1900, which has serious implications for urban development and impacts on the local environment. Overall, our results provide a new way to study urban systems based on novel, geohistorical data.

     
    more » « less
  5. Estimating human mobility responses to the large-scale spreading of the COVID-19 pandemic is crucial, since its significance guides policymakers to give Non-pharmaceutical Interventions, such as closure or reopening of businesses. It is challenging to model due to complex social contexts and limited training data. Recently, we proposed a conditional generative adversarial network (COVID-GAN) to estimate human mobility response under a set of social and policy conditions integrated from multiple data sources. Although COVID-GAN achieves a good average estimation accuracy under real-world conditions, it produces higher errors in certain regions due to the presence of spatial heterogeneity and outliers. To address these issues, in this article, we extend our prior work by introducing a new spatio-temporal deep generative model, namely, COVID-GAN+. COVID-GAN+ deals with the spatial heterogeneity issue by introducing a new spatial feature layer that utilizes the local Moran statistic to model the spatial heterogeneity strength in the data. In addition, we redesign the training objective to learn the estimated mobility changes from historical average levels to mitigate the effects of spatial outliers. We perform comprehensive evaluations using urban mobility data derived from cell phone records and census data. Results show that COVID-GAN+ can better approximate real-world human mobility responses than prior methods, including COVID-GAN. 
    more » « less