Abstract The monthly mean sea level along the U.S. Mid‐Atlantic Coast varies seasonally, reaching a minimum in January and a maximum in September during the 1960–2020 period. However, this seasonal cycle has changed significantly on multi‐decadal timescales. In the last two decades, the annual minimum has shifted from January to February. The amplitude of seasonal changes increased by 65% from 14.16 cm in 1980–1999 to 23.16 cm in 2000–2020. Even more concerning, the maximum sea level in September rose by 82%, from 6.81 to 12.38 cm, potentially exacerbating coastal flooding over the past 20 years. A two‐layer ocean model effectively replicates both the phase and magnitude of the observed changes and attributes these shifts to changes in wind stress near the coast, with relatively minor influence from deep ocean forcing. Both alongshore and cross‐shore wind stress changes are found to contribute to changes in the sea level's seasonal cycle.
more »
« less
This content will become publicly available on April 1, 2026
Impact‐Based Thresholds for Investigation of High‐Tide Flooding in the United States
Abstract High‐tide flooding—minor, disruptive coastal inundation—is expected to become more frequent as sea levels rise. However, quantifying just how quickly high‐tide flooding rates are changing, and whether some places experience more high‐tide flooding than others, is challenging. To quantify trends in high‐tide flooding from tide‐gauge observations, flood thresholds—elevations above which flooding begins—must be specified. Past studies of high‐tide flooding in the United States have used different data sets and approaches for specifying flood thresholds, only some of which directly relate to coastal impacts, which has lead to sometimes conflicting and ambiguous results. Here we present a novel method for quantifying, with uncertainty, high‐tide flooding thresholds along the United States coast based on sparsely available impact‐based flood thresholds. We use those newly modeled thresholds to make an updated assessment of changes in high‐tide flooding across the United States over the past few decades. From 1990–2000 to 2010–2020, high‐tide flooding rates almost certainly (probability ) increased along the United States East Coast, Gulf Coast, California, and Pacific Islands, while they very likely decreased along Alaska during that time; significant changes in high‐tide flooding rates between the two decades were not detected in Oregon, Washington, and the Caribbean. Averaging spatially, we find that high‐tide flooding rates probably more than doubled nationally between 1990–2000 and 2010–2020. Our approach lays a foundation for future studies to more accurately model high‐tide flood thresholds and trends along the global coastline.
more »
« less
- Award ID(s):
- 2123692
- PAR ID:
- 10616549
- Publisher / Repository:
- American Geophysical Union
- Date Published:
- Journal Name:
- Earth's Future
- Volume:
- 13
- Issue:
- 4
- ISSN:
- 2328-4277
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Sea‐level rise is leading to increasingly frequent coastal floods globally. Recent research shows that changes in tidal properties and storm surge magnitudes can further exacerbate sea‐level rise‐related increases in flood frequencies. However, such non‐stationarity in tide and storm surge statistics are largely neglected in existing coastal flood projection methodologies. Here we develop a framework to explore the effect that different realizations of various sources of uncertainty have on projections of coastal flood frequencies, including changes in tidal range and storminess. Our projection methodology captures how observed flood rates depend on how storm surges coincide with tidal extremes. We show that higher flood rates and earlier emergence of chronic flooding are associated with larger sea‐level rise rates, lower flood thresholds, and increases in tidal range and skew surge magnitudes. Smaller sea‐level rise rates, higher flood thresholds and decreases in sea level variability lead to commensurately lower flood rates. Percentagewise, changes in tidal amplitudes generally have a much larger impact on flood frequencies than equivalent percentagewise changes in storm surge magnitudes. We explore several implications of these findings. Firstly, understanding future local changes in storm surges and tides is required to fully quantify future flood hazards. Secondly, existing hazard assessments may underestimate future flood rates as changes in tides are not considered. Finally, identifying the flood frequencies and severities relevant to local coastal managers is imperative to develop useable and policy‐relevant projections for decisionmakers.more » « less
-
Abstract Tide gauge water levels are commonly used as a proxy for flood incidence on land. These proxies are useful for projecting how sea‐level rise (SLR) will increase the frequency of coastal flooding. However, tide gauges do not account for land‐based sources of coastal flooding and therefore flood thresholds and the proxies derived from them likely underestimate the current and future frequency of coastal flooding. Here we present a new sensor framework for measuring the incidence of coastal floods that captures both subterranean and land‐based contributions to flooding. The low‐cost, open‐source sensor framework consists of a storm drain water level sensor, roadway camera, and wireless gateway that transmit data in real‐time. During 5 months of deployment in the Town of Beaufort, North Carolina, 24 flood events were recorded. Twenty‐five percent of those events were driven by land‐based sources—rainfall, combined with moderate high tides and reduced capacity in storm drains. Consequently, we find that flood frequency is higher than that suggested by proxies that rely exclusively on tide gauge water levels for determining flood incidence. This finding likely extends to other locations where stormwater networks are at a reduced drainage capacity due to SLR. Our results highlight the benefits of instrumenting stormwater networks directly to capture multiple drivers of coastal flooding. More accurate estimates of the frequency and drivers of floods in low‐lying coastal communities can enable the development of more effective long‐term adaptation strategies.more » « less
-
Rising sea levels have increased flood risk in coastal communities on both the east and west coasts of the USA. The goal of this analysis is to approximate flood defense costs from cyclonic flooding as a partial means to evaluate the resilience of coastal communities. Storm surge models were previously constructed via an established approach to represent historical and future coastal Louisiana landscapes and associated flood patterns. Coastal flooding was also previously simulated via a suite of 14 hurricanes. Approximate levee heights surrounding Lafitte, Louisiana, are calculated from the surge and wave output of Hurricane Isaac, the predominated hurricane in the Lafitte area for all years examined (NAVD88, m): 1.68 (1930), 2.92 (1970), 3.30 (1990), 4.82 (2010), 5.93 (2030), 6.57 (2050), 7.16 (2070), 7.70 (2090), and 8.22 (2110). Approximate costs per person are also calculated (2010 USD): $49,500 (1930), $41,400 (1970), $37,500 (1990), $181,600 (2010), $223,600 (2030), $247,800 (2050), $269,900 (2070), $290,100 (2090), and $309,800 (2110). The Gulf of Mexico (GOM) migrated 7.4 km inland within the Louisiana Barataria coastal basin between 1973 and 2010. For each person in Lafitte, flood defense costs increased approximately (2010 USD) $19,000 per person per kilometer inland migration of the GOM from 1973 to 2010. The methodology developed in this case study effectively connects wetland loss with increased flood defense costs and can be applied to communities with similar challenges.more » « less
-
Abstract The system of oceanic flows constituting the Atlantic Meridional Overturning Circulation (AMOC) moves heat and other properties to the subpolar North Atlantic, controlling regional climate, weather, sea levels, and ecosystems. Climate models suggest a potential AMOC slowdown towards the end of this century due to anthropogenic forcing, accelerating coastal sea level rise along the western boundary and dramatically increasing flood risk. While direct observations of the AMOC are still too short to infer long-term trends, we show here that the AMOC-induced changes in gyre-scale heat content, superimposed on the global mean sea level rise, are already influencing the frequency of floods along the United States southeastern seaboard. We find that ocean heat convergence, being the primary driver for interannual sea level changes in the subtropical North Atlantic, has led to an exceptional gyre-scale warming and associated dynamic sea level rise since 2010, accounting for 30-50% of flood days in 2015-2020.more » « less
An official website of the United States government
