skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Earthquake slip surfaces identified by biomarker thermal maturity within the 2011 Tohoku-Oki earthquake fault zone
Abstract Extreme slip at shallow depths on subduction zone faults is a primary contributor to tsunami generation by earthquakes. Improving earthquake and tsunami risk assessment requires understanding the material and structural conditions that favor earthquake propagation to the trench. We use new biomarker thermal maturity indicators to identify seismic faults in drill core recovered from the Japan Trench subduction zone, which hosted 50 m of shallow slip during theMw9.1 2011 Tohoku-Oki earthquake. Our results show that multiple faults have hosted earthquakes with displacement ≥ 10 m, and each could have hosted many great earthquakes, illustrating an extensive history of great earthquake seismicity that caused large shallow slip. We find that lithologic contrasts in frictional properties do not necessarily determine the likelihood of large shallow slip or seismic hazard.  more » « less
Award ID(s):
1260555
PAR ID:
10616609
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Communications
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract On 18 November 2022, a large earthquake struck offshore southern Sumatra, generating a tsunami with 25 cm peak amplitude recorded at tide gauge station SBLT. OurW‐phase solution indicates a shallow dip of 6.2°, compatible with long‐period surface wave radiation patterns. Inversion of teleseismic body waves indicates a shallow slip distribution extending from about 10 km deep to near the trench with maximum slip of ∼4.1 m and seismic moment of  Nm (MW7.3). Joint modeling of seismic and tsunami data indicates a shallow rigidity of ∼23 GPa. We find a low moment‐scaled radiated energy of , similar to that of the 2010MW7.8 Mentawai event () and other tsunami earthquakes. These characteristics indicate that the 2022 event should be designated as a smaller moment magnitude tsunami earthquake compared to the other 12 well‐documented global occurrences since 1896. The 2022 event ruptured up‐dip of the 2007MW8.4 Bengkulu earthquake, demonstrating shallow seismogenic capability of a megathrust that had experienced both a deeper seismic event and adjacent shallow aseismic afterslip. We consider seismogenic behavior of shallow megathrusts and concern for future tsunami earthquakes in subduction zones globally, noting a correlation between tsunami earthquake occurrence and subducting seafloor covered with siliceous pelagic sediments. We suggest that the combination of pelagic clay and siliceous sediments and rough seafloor topography near the trench play important roles in controlling the genesis of tsunami earthquakes along Sumatra and other regions, rather than the subduction tectonic framework of accretionary or erosive margin. 
    more » « less
  2. Tsunamis generated by seafloor displacements accompanying large submarine earthquakes provide sensitivity to absolute slip position and distribution for offshore faulting analogous to that of geodetic observations for landward faulting. Tsunami recordings at deep‐water and near‐shore ocean bottom pressure sensors and tide gauges, along with runup and inundation measurements, can now be reliably modeled using detailed bathymetric structures and robust numerical codes. As a result, tsunami observations now play an important role in quantifying coseismic slip distributions for large submarine earthquakes in subduction zones and other tectonic environments. Applications of joint modeling or inversion of seismic, geodetic and tsunami observations for recent major earthquakes are described, highlighting the specific contributions of the tsunami observations to source model resolution. Tsunami observations provide unique information on the up‐dip extent of earthquake coseismic slip on subduction zone megathrust faults and occurrence of near‐trench slip, which are usually not well constrained by seismic and land‐based geodetic signals. Tsunami signals also help to detect offshore slow slip that is not evident in seismic or land‐based geodetic data and to balance geophysical constraints on ruptures that extend from on‐shore to off‐shore. Tsunami runup measurements and stratigraphic deposits further provide unique constraints on large earthquake ruptures that occurred prior to modern geophysical instrumentation. 
    more » « less
  3. Abstract Most great earthquakes on subduction zone plate boundaries have large coseismic slip concentrated along the contact between the subducting slab and the upper plate crust. On 4 March 2021, a magnitude 7.4 foreshock struck 1 hr 47 min before a magnitude 8.1 earthquake along the northern Kermadec island arc. The mainshock is the largest well‐documented underthrusting event along the ∼2,500‐km long Tonga‐Kermadec subduction zone. Using teleseismic, geodetic, and tsunami data, we find that all substantial coseismic slip in the mainshock is located along the mantle/slab interface at depths from 20 to 55 km, with the large foreshock nucleating near the down‐dip edge. Smaller foreshocks and most aftershocks are located up‐dip of the mainshock, where substantial prior moderate thrust earthquake activity had occurred. The upper plate crust is ∼17 km thick in northern Kermadec with only moderate‐size events along the crust/slab interface. A 1976 sequence withMWvalues of 7.9, 7.8, 7.3, 7.0, and 7.0 that spanned the 2021 rupture zone also involved deep megathrust rupture along the mantle/slab contact, but distinct waveforms exclude repeating ruptures. Variable waveforms for eight deep M6.9+ thrusting earthquakes since 1990 suggest discrete slip patches distributed throughout the region. The ∼300‐km long plate boundary in northern Kermadec is the only documented subduction zone region where the largest modeled interplate earthquakes have ruptured along the mantle/slab interface, suggesting that local frictional properties of the putatively hydrated mantle wedge may involve a dense distribution of Antigorite‐rich patches with high slip rate velocity weakening behavior in this locale. 
    more » « less
  4. Abstract Strong tsunami excitation from slow rupture of shallow subduction zone faults is recognized as a key concern for tsunami hazard assessment. Three months after the 22 July 2020 magnitude 7.8 thrust earthquake struck the plate boundary below the Shumagin Islands, Alaska, a magnitude 7.6 aftershock ruptured with complex intraplate faulting. Despite the smaller size and predominantly strike-slip faulting mechanism inferred from seismic waves for the aftershock, it generated much larger tsunami waves than the mainshock. Here we show through detailed analysis of seismic, geodetic, and tsunami observations of the aftershock that the event implicated unprecedented source complexity, involving weakly tsunamigenic fast rupture of two intraplate faults located below and most likely above the plate boundary, along with induced strongly tsunamigenic slow thrust slip on a third fault near the shelf break likely striking nearly perpendicular to the trench. The thrust slip took over 5 min, giving no clear expression in seismic or geodetic observations while producing the sizeable far-field tsunami. 
    more » « less
  5. Abstract Megathrust geometric properties exhibit some of the strongest correlations with maximum earthquake magnitude in global surveys of large subduction zone earthquakes, but the mechanisms through which fault geometry influences subduction earthquake cycle dynamics remain unresolved. Here, we develop 39 models of sequences of earthquakes and aseismic slip (SEAS) on variably‐dipping planar and variably‐curved nonplanar megathrusts using the volumetric, high‐order accurate codetandemto account for fault curvature. We vary the dip, downdip curvature and width of the seismogenic zone to examine how slab geometry mechanically influences megathrust seismic cycles, including the size, variability, and interevent timing of earthquakes. Dip and curvature control characteristic slip styles primarily through their influence on seismogenic zone width: wider seismogenic zones allow shallowly‐dipping megathrusts to host larger earthquakes than steeply‐dipping ones. Under elevated pore pressure and less strongly velocity‐weakening friction, all modeled fault geometries host uniform periodic ruptures. In contrast, shallowly‐dipping and sharply‐curved megathrusts host multi‐period supercycles of slow‐to‐fast, small‐to‐large slip events under higher effective stresses and more strongly velocity‐weakening friction. We discuss how subduction zones' maximum earthquake magnitudes may be primarily controlled by the dip and dimensions of the seismogenic zone, while second‐order effects from structurally‐derived mechanical heterogeneity modulate the recurrence frequency and timing of these events. Our results suggest that enhanced co‐ and interseismic strength and stress variability along the megathrust, such as induced near areas of high or heterogeneous fault curvature, limits how frequently large ruptures occur and may explain curved faults' tendency to host more frequent, smaller earthquakes than flat faults. 
    more » « less