skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Organic thermal maturity as a proxy for frictional fault heating: Experimental constraints on methylphenanthrene kinetics at earthquake timescales
Biomarker thermal maturity is widely used to study burial heating of sediments over millions of years. Heating over short timescales such as during earthquakes should also result in measurable increases in biomarker thermal maturity. However, the sensitivity of biomarker thermal maturity reactions to short, higher-temperature heating has not been established. We report on hydrous pyrolysis experiments that determine the kinetic parameters of methylphenanthrene maturation at timescales and temperatures relevant to earthquake heating. Samples of Woodford Shale were heated at temperatures up to 343 °C over 15–150 min. The thermal maturity of the samples as measured by the methylphenanthrene index-1 (MPI-1) increased with heating time and temperature. We find that MPI-1 increases with time and temperature consistent with a first-order kinetic model and Arrhenius temperature relationship. Over the timescales tested here, MPI-1 is strongly affected by maximum temperature and less sensitive to heating duration. Production of new phenanthrene isomers and expulsion of a liquid pyrolyzate also occurred. Differential expulsion of methylphenanthrene isomers affected the apparent maturity of the rock at lower temperatures and may need to be considered for organic-rich fault rocks. Our results demonstrate that the overall MPI-1 reaction extent in both the rock and pyrolyzate are a useful measure of thermal maturity and reflect temperature history during rapid heating.  more » « less
Award ID(s):
1219488
PAR ID:
10616616
Author(s) / Creator(s):
; ;
Publisher / Repository:
Geochimica et Cosmochimica Acta
Date Published:
Journal Name:
Geochimica et Cosmochimica Acta
Volume:
151
Issue:
C
ISSN:
0016-7037
Page Range / eLocation ID:
103-116
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Recent experiments and field observations have indicated that biomarker molecules can react over short timescales relevant to seismic slip, thereby making these compounds a useful tool in studying temperature rise in fault zones. However, short‐timescale biomarker reaction kinetics studies have previously focused on compounds that have already experienced burial heating. Here, we present a set of hydrous pyrolysis experiments on Pleistocene‐aged shallow marine sediment to develop the reaction kinetics of long‐chain alkenone destruction, change in the alkenone unsaturation ratio (), and change in then‐alkane chain length distribution. Our results show that biomarker thermal maturity provides a useful method for detecting temperature rise in the shallow reaches of faults, such as subduction zone trench environments. Through the course of our work, we also noted the alteration of total alkenone concentrations andvalues in crushed sediments stored dry at room temperature for durations of months to years but not in the solvent extracts of these materials. This result, though parenthetical for our work in fault zones, has important implications for proper storage of sedimentary samples to be used for alkenone paleotemperature and productivity analysis. 
    more » « less
  2. Abstract Creeping faults are difficult to assess for seismic hazard because they may participate in rupture even though they likely cannot nucleate large earthquakes. The creeping central section of the San Andreas fault in California (USA) has not participated in a historical large earthquake; however, earthquake ruptures nucleating in the locked northern and southern sections may propagate through the creeping section. We used biomarker thermal maturity and K/Ar dating on samples from the San Andreas Fault Observatory at Depth to look for evidence of earthquakes. Biomarkers show evidence of many earthquakes with displacements >1.5 m in and near a 3.5-m-wide patch of the fault. We show that K/Ar ages decrease with thermal maturity, and partial resetting occurs during coseismic heating. Therefore, measured ages provide a maximum constraint on earthquake age, and the youngest earthquakes here are younger than 3 Ma. Our results demonstrate that creeping faults may host large earthquakes over longer time scales. 
    more » « less
  3. Hydrogen is a rapidly diffusing monovalent cation in nominally anhydrous minerals (NAMs, such as olivine, orthopyroxene, and clinopyroxene), which is potentially re-equilibrated during silicate melt-rock and aqueous fluid-rock interactions in massif and abyssal peridotites. We apply a 3D numerical diffusion modeling technique to provide first-order timescales of complete hydrogen re-equilibration in olivine, clinopyroxene, and orthopyroxene over the temperature range 600-1200°C. Model crystals are 1-3 mm along the c-axis and utilize H+ diffusion coefficients appropriate for Fe-bearing systems. Two sets of models were run with different boundary compositions: 1) “low-H models” are constrained by mineral-melt equilibrium partitioning with a basaltic melt that has 0.75 wt% H2O and 2) “high-H models,” which utilize the upper end of the estimated range of mantle water solubility for each phase. Both sets of models yield re-equilibration timescales that are identical and are fast for all phases at a given temperature. These timescales have strong log-linear trends as a function of temperature (R2 from 0.97 to 0.99) that can be used to calculate expected re-equilibration time at a given temperature and grain size. At the high end of the model temperatures (1000-1200°C), H+ completely re-equilibrates in olivine, orthopyroxene, and clinopyroxene within minutes to hours, consistent with previous studies. These short timescales indicate that xenolith NAM mantle water contents are likely to be overprinted prior to eruption. The models also resolve the decoupled water-trace element relationship in Southwest Indian Ridge peridotites, in which peridotite REE abundances are reproduced by partial melting models whereas the relatively high NAM H2O contents require later re-equilibration with melt. At temperatures of 600-800°C, which correspond to conditions of hydrothermal alteration of pyroxene to amphibole and talc, H+ re-equilibration typically occurs over a range of timescales spanning days to years. These durations are well within existing estimates for the duration of fluid flow in oceanic hydrothermal systems, suggesting that peridotite NAM water contents are susceptible to diffusive overprinting during higher temperature hydrothermal alteration. Thus, diffusion during aqueous fluid-rock interactions may also explain NAM H2O contents that are too high to reflect residues of melting. These relatively short timescales at low temperatures suggest that the origin of water contents measured in peridotite NAMs requires additional constraints on sample petrogenesis, including petrographic and trace element analyses. Our 3D model results also hint that H+ may diffuse appreciably during peridotite serpentinization, but diffusion coefficients at low temperature are unconstrained and additional experimental investigations are needed. 
    more » « less
  4. SUMMARY Accurate absolute palaeointensity is essential for understanding dynamo processes on the Earth and other planetary bodies. Although great efforts have been made to propose techniques to obtain magnetic field strength from rock samples, such as Thellier-series methods, the amount of high-fidelity palaeointensities remains limited. One primary reason for this is the thermal alteration of samples that pervasively occurred during palaeointensity experiments. In this study, we developed a comprehensive rock magnetic experiment, termed thermal rock magnetic cycling (TRMC), that can utilize measurements of critical rock magnetic properties at elevated temperatures during multiple heating-cooling cycles to track thermal changes in bulk samples and individual magnetic components with different Curie temperatures in samples for palaeointensity interpretations. We demonstrate this method on a Galapagos lava sample, GA 84.6. The results for this specimen revealed that GA 84.6v underwent thermophysical alteration throughout the TRMC experiment, resulting in changes in its remanence carrying capacity. These findings were then used to interpret the palaeointensity results of specimen GA 84.6c, which revealed that the two-slope Arai plot yielded two linear segments with distinct palaeointensity values that were both biased by thermophysical alteration. To further test the TRMC method, we selected another historical lava sample (HS 2) from Mt Lassen, detecting slight thermal-physical changes after heating the specimen HS 2–8C to a target temperature of 400 °C. We also isolated a stable magnetic component with a Curie temperature below 400 °C using the TRMC method, which may provide a more reliable palaeointensity estimate of 51 μT. By providing a method for tracking thermal alteration independent of palaeointensity experiments, the TRMC method can explore subtle, unrecognizable thermal alteration processes in less detailed palaeointensity measurements, which can help to assess the thermal stability of the measured samples and interpret the changes in the TRM unblocking spectrum and palaeointensity estimates, facilitating the acquisition of more reliable records for constrain the formation of the inner core and the evolution of Earth's magnetic field. 
    more » « less
  5. Exhumed faults record the temperatures produced by earthquakes. We show that transient elevated fault surface temperatures preserved in the rock record are quantifiable through microtextural analysis, fault-rock thermochronometry, and thermomechanical modeling. We apply this approach to a network of mirrored, minor, hematite-coated fault surfaces in the exhumed, seismogenic Wasatch fault zone, UT, USA. Polygonal and lobate hematite crystal morphologies, coupled with hematite (U–Th)/He data patterns from these surfaces and host rock apatite (U–Th)/He data, are best explained by friction-generated heat at slip interface geometric asperities. These observations inform thermomechanical simulations of flash heating at frictional contacts and resulting fractional He loss over generated fault surface time–temperature histories. Temperatures of >∼700–1200 °C, depending on asperity size, are sufficient to induce 85–100% He loss from hematite within 200 μm of the fault surface. Spatially-isolated, high-temperature microtextures imply spatially-variable heat generation and decay. Our results reveal that flash heating of asperities and associated frictional weakening likely promote small earthquakes (Mw≈−3 to 3) on Wasatch hematite fault mirrors. We suggest that similar thermal processes and resultant dynamic weakening may facilitate larger earthquakes. 
    more » « less