skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Do \({\mit \Lambda }_{\mathrm {CC}}\) and \(G\) Run?
No AbstractPublished by the Jagiellonian University2024authors  more » « less
Award ID(s):
2412570
PAR ID:
10616670
Author(s) / Creator(s):
Publisher / Repository:
Polish Academy of Arts and Sciences
Date Published:
Journal Name:
Acta Physica Polonica B
Volume:
55
Issue:
12
ISSN:
0587-4254
Page Range / eLocation ID:
1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A campaign of Coulomb-excitation experiments to study the electromagnetic structure of \(^{110}\)Cd was performed using beams of \(^{14}\)N, \(^{32}\)S, and \(^{60}\)Ni. The use of various reaction partners enables disentangling the contributions of individual electromagnetic matrix elements involved in the excitation process, yielding, among others, a precise determination of the lifetime of the 2\(^+_2\) state in \(^{110}\)Cd. AbstractPublished by the Jagiellonian University2025authors 
    more » « less
  2. A high-statistics \(\beta \)-decay experiment was conducted at the TRIUMF-ISAC facility using the \(8\pi \) \(\gamma \)-ray spectrometer and its ancillary detectors to study the low-spin structure of \(^{98}\)Zr. The analysis of \(\gamma \)–\(\gamma \) and \(e^-\)–\(\gamma \) coincidence data is presented. New measurements of \(\gamma \)-ray branching ratios and mixing ratios are reported for four \(J^{\pi } = 2^+\) states located above 2 MeV excitation energy in \(^{98}\)Zr. Based on these measurements, ratios of \(B\)(E2) values for transitions to lower-lying levels are determined, highlighting the preferential decay paths of these \(2^+\) states. AbstractPublished by the Jagiellonian University2025authors 
    more » « less
  3. A search for pair production of scalar and vector leptoquarks (LQs) each decaying to a muon and a bottom quark is performed using proton-proton collision data collected at s = 13 TeV with the CMS detector at the CERN LHC, corresponding to an integrated luminosity of 138 fb 1 . No excess above standard model expectation is observed. Scalar (vector) LQs with masses less than 1810 (2120) GeV are excluded at 95% confidence level, assuming a 100% branching fraction of the LQ decaying to a muon and a bottom quark. These limits represent the most stringent to date. © 2024 CERN, for the CMS Collaboration2024CERN 
    more » « less
  4. Searches for pair-produced multijet signatures using data corresponding to an integrated luminosity of 128 fb 1 of proton-proton collisions at s = 13 TeV are presented. A data scouting technique is employed to record events with low jet scalar transverse momentum sum values. The electroweak production of particles predicted in R -parity violating supersymmetric models is probed for the first time with fully hadronic final states. This is the first search for prompt hadronically decaying mass-degenerate higgsinos, and extends current exclusions on R -parity violating top squarks and gluinos. © 2024 CERN, for the CMS Collaboration2024CERN 
    more » « less
  5. The first search for soft unclustered energy patterns (SUEPs) is performed using an integrated luminosity of 138 fb 1 of proton-proton collision data at s = 13 TeV , collected in 2016–2018 by the CMS detector at the LHC. Such SUEPs are predicted by hidden valley models with a new, confining force with a large ’t Hooft coupling. In events with boosted topologies, selected by high-threshold hadronic triggers, the multiplicity and sphericity of clustered tracks are used to reject the background from standard model quantum chromodynamics. With no observed excess of events over the standard model expectation, limits are set on the cross section for production via gluon fusion of a scalar mediator with SUEP-like decays. © 2024 CERN, for the CMS Collaboration2024CERN 
    more » « less