Effective human-robot interaction is increasingly vital across various domains, including assistive robotics, emotional communication, entertainment, and industrial automation. Visual feedback, a common feature of current interfaces, may not be suitable for all environments. Audio feedback serves as a critical supplementary communication layer in settings where visibility is low or where robotic operations generate extensive data. Sonification, which transforms a robot's trajectory, motion, and environmental signals into sound, enhances users' comprehension of robot behavior. This improvement in understanding fosters more effective, safe, and reliable Human-Robot Interaction (HRI). Demonstrations of auditory data sonification's benefits are evident in real-world applications such as industrial assembly, robot-assisted rehabilitation, and interactive robotic exhibitions, where it promotes cooperation, boosts performance, and heightens engagement. Beyond conventional HRI environments, auditory data sonification shows substantial potential in managing complex robotic systems and intricate structures, such as hyper-redundant robots and robotic teams. These systems often challenge operators with complex joint monitoring, mathematical kinematic modeling, and visual behavior verification. This dissertation explores the sonification of motion in hyper-redundant robots and teams of industrial robots. It delves into the Wave Space Sonification (WSS) framework developed by Hermann, applying it to the motion datasets of protein molecules modeled as hyper-redundant mechanisms with numerous rigid nano-linkages. This research leverages the WSS framework to develop a sonification methodology for protein molecules' dihedral angle folding trajectories. Furthermore, it introduces a novel approach for the systematic sonification of robotic motion across varying configurations. By employing localized wave fields oriented within the robots' configuration space, this methodology generates auditory outputs with specific timbral qualities as robots move through predefined configurations or along certain trajectories. Additionally, the dissertation examines a team of wheeled industrial/service robots whose motion patterns are sonified using sinusoidal vibratory sounds, demonstrating the practical applications and benefits of this innovative approach.
more »
« less
Sonification of Motion of Unmanned Aerial Vehicles
The development of Unmanned Aerial Vehicles (UAVs) can be enhanced through the use of sonification, an emerging field within Human-Robot Interaction (HRI). This dissertation introduces UAVSonification, a computational algorithm that maps simulation data to musical notes using the Musical Instrument Digital Interface (MIDI). By integrating UAVSonification with Formation Flight Simulation in Simulink, this study explores the sonification of UAV trajectories under environmental conditions. The function transforms simulation data into auditory signals, allowing users to discern key dynamics through sound. Specifically, the data series for multiple UAVs is mapped to piano notes via MIDI on MATLAB, providing auditory insights into UAV trajectories, environmental conditions, and control errors. A well-controlled flight path and stable heading controller produce harmonious sounds, while disruptions and deviations result in dissonance. UAVSonification offers a unique auditory approach to understanding UAV behavior in relation to control dynamics and environmental conditions. The sonification of UAVs has the potential to aid in the planning and analysis of UAV trajectories and controllers, as well as in creative endeavors. The effectiveness of the proposed method is shown through MATLAB numerical simulations.
more »
« less
- Award ID(s):
- 2153744
- PAR ID:
- 10616687
- Publisher / Repository:
- University of Michigan
- Date Published:
- Subject(s) / Keyword(s):
- unmanned aerial vehicles uav development sonification human-drone interaction human-robot interaction controller
- Format(s):
- Medium: X
- Institution:
- University of Michigan
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
UAVs are deployed in various applications including disaster search-and-rescue, precision agriculture, law enforcement and first response. As UAV software systems grow more complex, the drawbacks of developing them in low-level languages become more pronounced. For example, the lack of memory safety in C implies poor isolation between the UAV autopilot and other concurrent tasks. As a result, the most crucial aspect of UAV reliability-timely control of the flight-could be adversely impacted by other tasks such as perception or planning. We introduce JCopter, an autopilot framework for UAVs developed in a managed language, i.e., a high-level language with built-in safe memory and timing management. Through detailed simulation as well as flight testing, we demonstrate how JCopter retains the timeliness of C-based autopilots while also providing the reliability of managed languages.more » « less
-
The integration of onboard computing capabilities with unmanned aerial vehicles (UAV) has gained significant attention in recent years as part of mobile computing paradigms such as mobile edge computing (MEC), fog computing, and mobile cloud computing. To enhance the performance of airborne computing, networked airborne computing (NAC) aims to interconnect UAVs through direct flight-to-flight links, with UAVs sharing resources with each other. However, despite the growing interest in NAC and UAV-based computing, existing studies rely heavily on numerical simulations for performance evaluation and lack realistic simulators and hardware testbeds. To fill this gap, this paper presents the development of two NAC platforms: a realistic simulator based on ROS and Gazebo, and a hardware testbed with multiple UAVs communicating and sharing computing resources. Through simulation and real flight tests with two computation applications, we evaluate the platforms and examine the impact of mobility on NAC performance. Our findings offer valuable insights into NAC and provide guidance for future advancements.more » « less
-
UAVs have been studied and manufactured to help create wireless communications networks that are more flexible and cost-effective than a typical wireless network. These UAV networks could help bridge the digital divide in rural America by providing wireless communications service to areas where cell companies find it too expensive to build conventional cell towers. To test different aspects of a UAV-based millimeter-wave frequency network, we created a MATLAB simulation. The simulation visualizes a digital twin of a farm in eastern Nebraska where UAVs are tested. The simulation allows for link budgeting and interference management calculations by accommodating changes in transmitter and receiver location, frequency of the network, power of the transmitted signal, weather conditions, and antenna specifications. The simulation is able to calculate critical network values such as signal-to-interference-plus noise ratio (SINR), path loss, atmospheric loss, and antenna gains under dynamically changing conditions.more » « less
-
Unmanned Aerial Vehicles (UAVs) are a popular platform for air quality measurements. For vertical measurements, rotary-wing UAVs are particularly well-suited. However, an important concern with rotary-wing UAVs is how the rotor-downwash affects measurement accuracy. Measurements from a recent field campaign showed notable discrepancies between data from ascent and descent, which suggested the UAV downwash may be the cause. To investigate and explain these observed discrepancies, we use high-fidelity computational fluid dynamics (CFD) simulations to simulate a UAV during vertical flight. We use a tracer to model a gaseous pollutant and evaluate the impact of the rotor-downwash on the concentration around the UAV. Our results indicate that, when measuring in a gradient, UAV-based measurements were ∼50% greater than the expected concentration during descent, but they were accurate during ascent, regardless of the location of the sensor. These results provide an explanation for errors encountered during vertical measurements and provide insight for accurate data collection methods in future studies.more » « less
An official website of the United States government

