skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: AmbigDocs: Reasoning across Documents on Different Entities under the Same Name
Different entities with the same name can be difficult to distinguish. Handling confusing entity mentions is a crucial skill for language models (LMs). For example, given the question “Where was Michael Jordan educated?” and a set of documents discussing different people named Michael Jordan, can LMs distinguish entity mentions to generate a cohesive answer to the question? To test this ability, we introduce a new benchmark, AmbigDocs. By leveraging Wikipedia’s disambiguation pages, we identify a set of documents, belonging to different entities who share an ambiguous name. From these documents, we generate questions containing an ambiguous name and their corresponding sets of answers. Our analysis reveals that current state-of-the-art models often yield ambiguous answers or incorrectly merge information belonging to different entities. We establish an ontology categorizing four types of incomplete answers and automatic evaluation metrics to identify such categories. We lay the foundation for future work on reasoning across multiple documents with ambiguous entities.  more » « less
Award ID(s):
2521091
PAR ID:
10616717
Author(s) / Creator(s):
; ;
Publisher / Repository:
CONFERENCE ON LANGUAGE MODELING
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Due to large number of entities in biomedical knowledge bases, only a small fraction of entities have corresponding labelled training data. This necessitates entity linking models which are able to link mentions of unseen entities using learned representations of entities. Previous approaches link each mention independently, ignoring the relationships within and across documents between the entity mentions. These relations can be very useful for linking mentions in biomedical text where linking decisions are often difficult due mentions having a generic or a highly specialized form. In this paper, we introduce a model in which linking decisions can be made not merely by linking to a knowledge base entity but also by grouping multiple mentions together via clustering and jointly making linking predictions. In experiments on the largest publicly available biomedical dataset, we improve the best independent prediction for entity linking by 3.0 points of accuracy, and our clustering-based inference model further improves entity linking by 2.3 points. 
    more » « less
  2. Wooldridge, Michael J; Dy, Jennifer G; Natarajan, Sriraam (Ed.)
    Accurately typing entity mentions from text segments is a fundamental task for various natural language processing applications. Many previous approaches rely on massive human-annotated data to perform entity typing. Nevertheless, collecting such data in highly specialized science and engineering domains (e.g., software engineering and security) can be time-consuming and costly, without mentioning the domain gaps between training and inference data if the model needs to be applied to confidential datasets. In this paper, we study the task of seed-guided fine-grained entity typing in science and engineering domains, which takes the name and a few seed entities for each entity type as the only supervision and aims to classify new entity mentions into both seen and unseen types (i.e., those without seed entities). To solve this problem, we propose SEType which first enriches the weak supervision by finding more entities for each seen type from an unlabeled corpus using the contextualized representations of pre-trained language models. It then matches the enriched entities to unlabeled text to get pseudo-labeled samples and trains a textual entailment model that can make inferences for both seen and unseen types. Extensive experiments on two datasets covering four domains demonstrate the effectiveness of SEType in comparison with various baselines. Code and data are available at: https://github.com/yuzhimanhua/SEType. 
    more » « less
  3. Learning representations of entity mentions is a core component of modern entity linking systems for both candidate generation and making linking predictions. In this paper, we present and empirically analyze a novel training approach for learning mention and entity representations that is based on building minimum spanning arborescences (i.e., directed spanning trees) over mentions and entities across documents to explicitly model mention coreference relationships. We demonstrate the efficacy of our approach by showing significant improvements in both candidate generation recall and linking accuracy on the Zero-Shot Entity Linking dataset and MedMentions, the largest publicly available biomedical dataset. In addition, we show that our improvements in candidate generation yield higher quality re-ranking models downstream, setting a new SOTA result in linking accuracy on MedMentions. Finally, we demonstrate that our improved mention representations are also effective for the discovery of new entities via cross-document coreference. 
    more » « less
  4. Modern language models have the capacity to store and use immense amounts of knowledge about real-world entities, but it remains unclear how to update such knowledge stored in model parameters. While prior methods for updating knowledge in LMs successfully inject atomic facts, updated LMs fail to make inferences based on injected facts. In this work, we demonstrate that a context distillation-based approach can both impart knowledge about entities and propagate that knowledge to enable broader inferences. Our approach consists of two stages: transfer set generation and distillation on the transfer set. We first generate a transfer set by prompting a language model to generate continuations from the entity definition. Then, we update the model parameters so that the distribution of the LM (the student) matches the distribution of the LM conditioned on the definition (the teacher) on the transfer set. Our experiments demonstrate that this approach is more effective at propagating knowledge updates than fine-tuning and other gradient-based knowledge-editing methods. Moreover, it does not compromise performance in other contexts, even when injecting the definitions of up to 150 entities at once. 
    more » « less
  5. null (Ed.)
    Streaming cross document entity coreference (CDC) systems disambiguate mentions of named entities in a scalable manner via incremental clustering. Unlike other approaches for named entity disambiguation (e.g., entity linking), streaming CDC allows for the disambiguation of entities that are unknown at inference time. Thus, it is well-suited for processing streams of data where new entities are frequently introduced. Despite these benefits, this task is currently difficult to study, as existing approaches are either evaluated on datasets that are no longer available, or omit other crucial details needed to ensure fair comparison. In this work, we address this issue by compiling a large benchmark adapted from existing free datasets, and performing a comprehensive evaluation of a number of novel and existing baseline models. We investigate: how to best encode mentions, which clustering algorithms are most effective for grouping mentions, how models transfer to different domains, and how bounding the number of mentions tracked during inference impacts performance. Our results show that the relative performance of neural and feature-based mention encoders varies across different domains, and in most cases the best performance is achieved using a combination of both approaches. We also find that performance is minimally impacted by limiting the number of tracked mentions. 
    more » « less