skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: Indirect detection of hot dark matter
A<sc>bstract</sc> Cosmologically stable, light particles that came into thermal contact with the Standard Model in the early universe may persist today as a form of hot dark matter. For relics with masses in the eV range, their role in structure formation depends critically on their mass. We trace the evolution of such hot relics and derive their density profiles around cold dark matter halos, introducing a framework for theirindirect detection. Applying this framework to axions — a natural candidate for a particle that can reach thermal equilibrium with the Standard Model in the early universe and capable of decaying into two photons — we establish stringent limits on the axion-photon couplinggusing current observations of dwarf galaxies, the Milky Way halo, and galaxy clusters. Our results set new bounds on hot axions in the$$ \mathcal{O}\left(1-10\right) $$ O 1 10 eV range.  more » « less
Award ID(s):
2412834
PAR ID:
10616734
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Journal of High Energy Physics
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2025
Issue:
5
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> In this paper we explorepp→W±(ℓ±ν)γto$$ \mathcal{O}\left(1/{\Lambda}^4\right) $$ O 1 / Λ 4 in the SMEFT expansion. Calculations to this order are necessary to properly capture SMEFT contributions that grow with energy, as the interference between energy-enhanced SMEFT effects at$$ \mathcal{O}\left(1/{\Lambda}^2\right) $$ O 1 / Λ 2 and the Standard Model is suppressed. We find that there are several dimension eight operators that interfere with the Standard Model and lead to the same energy growth, ~$$ \mathcal{O}\left({E}^4/{\Lambda}^4\right) $$ O E 4 / Λ 4 , as dimension six squared. While energy-enhanced SMEFT contributions are a main focus, our calculation includes the complete set of$$ \mathcal{O}\left(1/{\Lambda}^4\right) $$ O 1 / Λ 4 SMEFT effects consistent with U(3)5flavor symmetry. Additionally, we include the decay of theW±→ ℓ±ν, making the calculation actually$$ \overline{q}{q}^{\prime}\to {\ell}^{\pm}\nu \gamma $$ q ¯ q ± νγ . As such, we are able to study the impact of non-resonant SMEFT operators, such as$$ \left({L}^{\dagger }{\overline{\sigma}}^{\mu }{\tau}^IL\right)\left({Q}^{\dagger }{\overline{\sigma}}^{\nu }{\tau}^IQ\right) $$ L σ ¯ μ τ I L Q σ ¯ ν τ I Q Bμν, which contribute to$$ \overline{q}{q}^{\prime}\to {\ell}^{\pm}\nu \gamma $$ q ¯ q ± νγ directly and not to$$ \overline{q}{q}^{\prime}\to {W}^{\pm}\gamma $$ q ¯ q W ± γ . We show several distributions to illustrate the shape differences of the different contributions. 
    more » « less
  2. A<sc>bstract</sc> We develop Standard Model Effective Field Theory (SMEFT) predictions ofσ($$ \mathcal{GG} $$ GG →h), Γ(h→$$ \mathcal{GG} $$ GG ), Γ(h→$$ \mathcal{AA} $$ AA ) to incorporate full two loop Standard Model results at the amplitude level, in conjunction with dimension eight SMEFT corrections. We simultaneously report consistent Γ(h→$$ \overline{\Psi}\Psi $$ Ψ ¯ Ψ ) results including leading QCD corrections and dimension eight SMEFT corrections. This extends the predictions of the former processes Γ, σto a full set of corrections at$$ \mathcal{O}\left({\overline{v}}_T^2/{\varLambda}^2{\left(16{\pi}^2\right)}^2\right) $$ O v ¯ T 2 / Λ 2 16 π 2 2 and$$ \mathcal{O}\left({\overline{v}}_T^4/{\Lambda}^4\right) $$ O v ¯ T 4 / Λ 4 , where$$ {\overline{v}}_T $$ v ¯ T is the electroweak scale vacuum expectation value and Λ is the cut off scale of the SMEFT. Throughout, cross consistency between the operator and loop expansions is maintained by the use of the geometric SMEFT formalism. For Γ(h→$$ \overline{\Psi}\Psi $$ Ψ ¯ Ψ ), we include results at$$ \mathcal{O}\left({\overline{v}}_T^2/{\Lambda}^2\left(16{\pi}^2\right)\right) $$ O v ¯ T 2 / Λ 2 16 π 2 in the limit where subleadingmΨ→ 0 corrections are neglected. We clarify how gauge invariant SMEFT renormalization counterterms combine with the Standard Model counter terms in higher order SMEFT calculations when the Background Field Method is used. We also update the prediction of the total Higgs width in the SMEFT to consistently include some of these higher order perturbative effects. 
    more » « less
  3. A<sc>bstract</sc> Results are presented from a search for the Higgs boson decay H→Zγ, where Z→ ℓ+withℓ= e or μ. The search is performed using a sample of proton-proton (pp) collision data at a center-of-mass energy of 13 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138 fb−1. Events are assigned to mutually exclusive categories, which exploit differences in both event topology and kinematics of distinct Higgs production mechanisms to enhance signal sensitivity. The signal strengthμ, defined as the product of the cross section and the branching fraction$$ \left[\sigma \left(\textrm{pp}\to \textrm{H}\right)\mathcal{B}\left(\textrm{H}\to \textrm{Z}\upgamma \right)\right] $$ σ pp H B H relative to the standard model prediction, is extracted from a simultaneous fit to theℓ+γ invariant mass distributions in all categories and is measured to beμ= 2.4 ± 0.9 for a Higgs boson mass of 125.38 GeV. The statistical significance of the observed excess of events is 2.7 standard deviations. This measurement corresponds to$$ \left[\sigma \left(\textrm{pp}\to \textrm{H}\right)\mathcal{B}\left(\textrm{H}\to \textrm{Z}\upgamma \right)\right]=0.21\pm 0.08 $$ σ pp H B H = 0.21 ± 0.08 pb. The observed (expected) upper limit at 95% confidence level onμis 4.1 (1.8), where the expected limit is calculated under the background-only hypothesis. The ratio of branching fractions$$ \mathcal{B}\left(\textrm{H}\to \textrm{Z}\upgamma \right)/\mathcal{B}\left(\textrm{H}\to \upgamma \upgamma \right) $$ B H / B H γγ is measured to be$$ {1.5}_{-0.6}^{+0.7} $$ 1.5 0.6 + 0.7 , which agrees with the standard model prediction of 0.69 ± 0.04 at the 1.5 standard deviation level. 
    more » « less
  4. Abstract Dark matter exists in our Universe, but its nature remains mysterious. The remarkable sensitivity of the Laser Interferometer Gravitational-Wave Observatory (LIGO) may be able to solve this mystery. A good dark matter candidate is the ultralight dark photon. Because of its interaction with ordinary matter, it induces displacements on LIGO mirrors that can lead to an observable signal. In a study that bridges gravitational wave science and particle physics, we perform a direct dark matter search using data from LIGO’s first (O1) data run, as opposed to an indirect search for dark matter via its production of gravitational waves. We demonstrate an achieved sensitivity on squared coupling as$$\sim\! 4\times 1{0}^{-45}$$ ~ 4 × 1 0 45 , in a$$U{(1)}_{{\rm{B}}}$$ U ( 1 ) B dark photon dark matter mass band around$${m}_{{\rm{A}}} \sim 4\,\times 1{0}^{-13}$$ m A ~ 4 × 1 0 13 eV. Substantially improved search sensitivity is expected during the coming years of continued data taking by LIGO and other gravitational wave detectors in a growing global network. 
    more » « less
  5. A<sc>bstract</sc> A time-dependent, flavour-tagged measurement ofCPviolation is performed withB0→ D+Dand$$ {B}_s^0 $$ B s 0 →$$ {D}_s^{+}{D}_s^{-} $$ D s + D s decays, using data collected by the LHCb detector in proton-proton collisions at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 6 fb−1. InB0→ D+Ddecays theCP-violation parameters are measured to be$$ {\displaystyle \begin{array}{c}{S}_{D^{+}{D}^{-}}=-0.552\pm 0.100\left(\textrm{stat}\right)\pm 0.010\left(\textrm{syst}\right),\\ {}{C}_{D^{+}{D}^{-}}=0.128\pm 0.103\left(\textrm{stat}\right)\pm 0.010\left(\textrm{syst}\right).\end{array}} $$ S D + D = 0.552 ± 0.100 stat ± 0.010 syst , C D + D = 0.128 ± 0.103 stat ± 0.010 syst . In$$ {B}_s^0 $$ B s 0 →$$ {D}_s^{+}{D}_s^{-} $$ D s + D s decays theCP-violating parameter formulation in terms ofϕsand|λ|results in$$ {\displaystyle \begin{array}{c}{\phi}_s=-0.086\pm 0.106\left(\textrm{stat}\right)\pm 0.028\left(\textrm{syst}\right)\textrm{rad},\\ {}\mid {\lambda}_{D_s^{+}{D}_s^{-}}\mid =1.145\pm 0.126\left(\textrm{stat}\right)\pm 0.031\left(\textrm{syst}\right).\end{array}} $$ ϕ s = 0.086 ± 0.106 stat ± 0.028 syst rad , λ D s + D s = 1.145 ± 0.126 stat ± 0.031 syst . These results represent the most precise single measurement of theCP-violation parameters in their respective channels. For the first time in a single measurement,CPsymmetry is observed to be violated inB0→ D+Ddecays with a significance exceeding six standard deviations. 
    more » « less