The future of coral reefs in a warming world depends on corals’ ability to recover from bleaching, the loss of their symbiotic dinoflagellate algae (Symbiodiniaceae) during marine heatwaves. Heat-tolerant symbiont species can remain in symbiosis during heat stress, but often provide less photosynthate to the host than heat-sensitive species under ambient conditions. Understanding how heat stress changes the dynamics of this tradeoff between stress tolerance and mutualism contribution is crucial for predicting coral success under climate change. To test how symbiont resource allocation affects coral recovery from heat stress, we exposed the coral Montipora capitata hosting either heat-sensitive Cladocopium C31 (C) or heat-tolerant Durusdinium glynnii (D) to heat stress. D regained symbiont density and photochemical efficiency faster after heat treat- ment than C, but symbiont recovery did not restore coral biomass or calcification rates to pre-bleaching levels in the initial recovery period. D populations also contributed less photosynthate to the host relative to C, even during heat stress. Further, higher-density symbiont populations of both species retained more photosynthate than lower-density populations, and corals receiving less photosynthate exhibited reduced calcification rates and lower intracellular pH. This is the first evidence that symbiont density and carbon translocation are negatively related, and the first to establish a link between Symbiodiniaceae carbon translocation and coral cellular homeostasis. Together, these results suggest the energy demand of symbiont regrowth after bleaching reduces their mutualism contribution and can thus delay host recovery. Reestablishing a beneficial endos- ymbiosis imposes additional costs as holobionts overcome stress, and may explain latent mortality among coral populations after alleviation of heat stress in the field. 
                        more » 
                        « less   
                    This content will become publicly available on November 12, 2025
                            
                            Coral larvae increase nitrogen assimilation to stabilize algal symbiosis and combat bleaching under increased temperature
                        
                    
    
            Rising sea surface temperatures are increasingly causing breakdown in the nutritional relationship between corals and algal endosymbionts (Symbiodiniaceae), threatening the basis of coral reef ecosystems and highlighting the critical role of coral reproduction in reef maintenance. The effects of thermal stress on metabolic exchange (i.e., transfer of fixed carbon photosynthates from symbiont to host) during sensitive early life stages, however, remains understudied. We exposed symbiotic Montipora capitata coral larvae in Hawaiʻi to high temperature (+2.5°C for 3 days), assessed rates of photosynthesis and respiration, and used stable isotope tracing (4 mM 13C sodium bicarbonate; 4.5 h) to quantify metabolite exchange. While larvae did not show any signs of bleaching and did not experience declines in survival and settlement, metabolic depression was significant under high temperature, indicated by a 19% reduction in respiration rates, but with no change in photosynthesis. Larvae exposed to high temperature showed evidence for maintained translocation of a major photosynthate, glucose, from the symbiont, but there was reduced metabolism of glucose through central carbon metabolism (i.e., glycolysis). The larval host invested in nitrogen cycling by increasing ammonium assimilation, urea metabolism, and sequestration of nitrogen into dipeptides, a mechanism that may support the maintenance of glucose translocation under thermal stress. Host nitrogen assimilation via dipeptide synthesis appears to be used for nitrogen limitation to the Symbiodiniaceae, and we hypothesize that nitrogen limitation contributes to retention of fixed carbon by favoring photosynthate translocation to the host. Collectively, our findings indicate that although these larvae are susceptible to metabolic stress under high temperature, diverting energy to nitrogen assimilation to maintain symbiont population density, photosynthesis, and carbon translocation may allow larvae to avoid bleaching and highlights potential life stage specific metabolic responses to stress. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2205966
- PAR ID:
- 10616904
- Editor(s):
- Moran, Nancy A
- Publisher / Repository:
- PLOS Biology
- Date Published:
- Journal Name:
- PLOS Biology
- Volume:
- 22
- Issue:
- 11
- ISSN:
- 1545-7885
- Page Range / eLocation ID:
- e3002875
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Climate change threatens symbiotic cnidarians’ survival by causing photosymbiosis breakdown in a process known as bleaching. Direct effects of temperature on cnidarian host physiology remain difficult to describe because heatwaves depress symbiont performance, leading to host stress and starvation. The symbiotic sea anemone Exaiptasia diaphana provides an opportune system to disentangle direct vs. indirect heat effects on the host, since it can survive indefinitely without symbionts. We tested the hypothesis that heat directly impairs cnidarian physiology by comparing symbiotic and aposymbiotic individuals of two laboratory subpopulations of a commonly used clonal strain of E. diaphana, CC7. We exposed anemones to a range of temperatures (ambient, +2°C, +4°C, +6°C) for 15–18 days, then measured their symbiont population densities, autotrophic carbon assimilation and translocation, photosynthesis, respiration, and host intracellular pH (pHi). Symbiotic anemones from the two subpopulations differed in size and symbiont density and exhibited distinct heat stress responses, highlighting the importance of acclimation to different laboratory conditions. Specifically, the cohort with higher initial symbiont densities experienced dose-dependent symbiont loss with increasing temperature and a corresponding decline in host photosynthate accumulation. In contrast, the cohort with lower initial symbiont densities did not lose symbionts or assimilate less photosynthate when heated, similar to the response of aposymbiotic anemones. However, anemone pHi decreased at higher temperatures regardless of cohort, symbiont presence, or photosynthate translocation, indicating that heat consistently disrupts cnidarian acid-base homeostasis independent of symbiotic status or mutualism breakdown. Thus, pH regulation may be a critical vulnerability for cnidarians in a changing climate.more » « less
- 
            Climate change accelerates coral reef decline and jeopardizes recruitment essential for ecosystem recovery. Adult corals rely on a vital nutritional exchange with their symbiotic algae (Symbiodiniaceae), but the dynamics of reliance from fertilization to recruitment are understudied. We investigated the physiological, metabolomic, and transcriptomic changes across 13 developmental stages of Montipora capitata, a coral in Hawaiʻi that inherits symbionts from parent to egg. We found that embryonic development depends on maternally provisioned mRNAs and lipids, with a rapid shift to symbiont-derived nutrition in late developmental stages. Symbiont density and photosynthesis peak in swimming larvae to fuel pelagic dispersal. By contrast, respiratory demand increases significantly during metamorphosis and settlement, reflecting this energy-intensive morphological reorganization. Symbiont proliferation is driven by symbiont ammonium assimilation in larval stages with little evidence of nitrogen metabolism in the coral host. As development progresses, the host enhances nitrogen sequestration, regulating symbiont populations, and ensuring the transfer of fixed carbon to support metamorphosis, with both metabolomic and transcriptomic indicators of increased carbohydrate availability. Although algal symbiont community composition remained stable, bacterial communities shifted with ontogeny, associated with holobiont metabolic reorganization. Our study reveals extensive metabolic changes during development with increasing reliance on symbiont nutrition. Metamorphosis and settlement emerge as critical periods of energetic vulnerability to projected climate scenarios that destabilize symbiosis. This highly detailed characterization of symbiotic nutritional exchange during sensitive early life stages provides essential knowledge for understanding and forecasting the function of nutritional symbioses and, specifically, coral survival and recruitment in a future of climate change.more » « less
- 
            Abstract The coral-dinoflagellate endosymbiosis is based on nutrient exchanges that impact holobiont energetics. Of particular concern is the breakdown or dysbiosis of this partnership that is seen in response to elevated temperatures, where loss of symbionts through coral bleaching can lead to starvation and mortality. Here we extend a dynamic bioenergetic model of coral symbioses to explore the mechanisms by which temperature impacts various processes in the symbiosis and to enable simulational analysis of thermal bleaching. Our model tests the effects of two distinct mechanisms for how increased temperature impacts the symbiosis: 1) accelerated metabolic rates due to thermodynamics and 2) damage to the photosynthetic machinery of the symbiont caused by heat stress. Model simulations show that the model can capture key biological responses to different levels of increased temperatures. Moderately increased temperatures increase metabolic rates and slightly decrease photosynthesis. The slightly decreased photosynthesis rates cause the host to receive less carbon and share more nitrogen with the symbiont. This results in temporarily increased symbiont growth and a higher symbiont/host ratio. In contrast, higher temperatures cause a breakdown of the symbiosis due to escalating feedback that involves further reduction in photosynthesis and insufficient energy supply for$$\hbox {CO}_2$$ concentration by the host. This leads to the accumulation of excess light energy and the generation of reactive oxygen species, eventually triggering symbiont expulsion and coral bleaching. Importantly, bleaching does not result from accelerated metabolic rates alone; it only occurs as a result of the photodamage mechanism due to its effect on nutrient cycling. Both higher light intensities and higher levels of DIN render corals more susceptible to heat stress. Conversely, heterotrophic feeding can increase the maximal temperature that can be tolerated by the coral. Collectively these results show that a bioenergetics model can capture many observed patterns of heat stress in corals, such as higher metabolic rates and higher symbiont/host ratios at moderately increased temperatures and symbiont expulsion at strongly increased temperatures.more » « less
- 
            Corals form symbiotic relationships with dinoflagellate algae of the family Symbiodiniaceae, bacteria, and other microbes. Central to that relationship is the regulation of nutrition flux between the animal host and the photosynthetic Symbiodiniaceae that it is reliant on for the majority of metabolic needs. Nitrogen availability controls the growth and density of Symbiodiniaceae within coral tissues and has been proposed to play a role in host derived symbiosis regulation. Warming ocean temperatures and subsequent increases in dissolved organic carbon can potentially increase nitrogen fixation and lead to bleaching. We investigated the importance of nitrogen metabolism in vivo with LC-MS based stable isotope tracing using nubbins from three species of Hawaiian coral, the more heat tolerant Montipora capitata and Porites compressa and the more heat sensitive Pocillopora acuta , that were collected from reefs in Kāne’ohe Bay, O’ahu. In addition to 15 N incorporation into nucleotides, amino acids, and urea cycle metabolites, we also observed significant isotopic labeling in dipeptides, supporting their previous identification as major heat stress response metabolites. Surprisingly, the dipeptides are highly enriched in 15 N compared to free amino acids, which are the biosynthetic precursors for dipeptides. This suggests that there is a high turnover of dipeptide pools and distinct biosynthetic mechanisms that separately mediate amino acid and dipeptide production. These preliminary data show that nitrogen assimilation in the coral holobiont is likely compartmentalized, with rapid assimilation and quick dipeptide turnover occurring in one region of the holobiont and slow turnover of other nitrogen containing metabolites in other region(s).more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
