null
(Ed.)
Abstract Let $$1\leq p \leq q <\infty $$ and let $$w \in \mathbb{C}$$. Weissler conjectured that the Hermite operator $$e^{w\Delta }$$ is bounded as an operator from $$L^{p}$$ to $$L^{q}$$ on the Hamming cube $$\{-1,1\}^{n}$$ with the norm bound independent of $$n$$ if and only if $$\begin{align*} |p-2-e^{2w}(q-2)|\leq p-|e^{2w}|q. \end{align*}$$It was proved in [ 1], [ 2], and [ 17] in all cases except $$2<p\leq q <3$$ and $$3/2<p\leq q <2$$, which stood open until now. The goal of this paper is to give a full proof of Weissler’s conjecture in the case $p=q$. Several applications will be presented.
more »
« less
An official website of the United States government

