skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 2, 2026

Title: Faster Information for Effective Long-Term Discharge: A Field Study in Adult Foster Care
As the US population ages, a growing challenge is placing hospital patients who require long-term post-acute care into adult foster care facilities: small long-term nursing facilities that care for those unable to age in place because their care requirements exceed what can be delivered at home. A key challenge in patient placement is the dynamic matching process between hospital discharge coordinators looking to place patients and facilities looking for residents. We designed, built, deployed, and maintain a system to support decision making among a team of six discharge coordinators assisting in the discharge of 127 patients across 1,047 facilities in Hawai'i. Our system collects vacancy and capability data from facilities via conversational SMS and processes it to recommend facilities that discharge coordinators might contact. Findings from a 14-month deployment provide evidence for how timely, accurate information positively impacts matching efficacy. We close with lessons learned for information collection systems and provisioning platforms in similar contexts.  more » « less
Award ID(s):
2339427
PAR ID:
10616975
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM Digital Library
Date Published:
Journal Name:
Proceedings of the ACM on Human-Computer Interaction
Volume:
9
Issue:
2
ISSN:
2573-0142
Page Range / eLocation ID:
1 to 29
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Objective: To identify differences in short-term outcomes of patients with coronavirus disease 2019 (COVID-19) according to various racial/ethnic groups.Design: Analysis of Cerner de-identified COVID-19 dataset.Setting: A total of 62 health care facilities.Participants: The cohort included 49,277 adult COVID-19 patients who were hospitalized from December 1, 2019 to November 13, 2020.Methods: We compared patients’ age, gender, individual components of Charl­son and Elixhauser comorbidities, medical complications, use of do-not-resuscitate, use of palliative care, and socioeconomic status between various racial and/or ethnic groups. We further compared the rates of in-hos­pital mortality and non-routine discharges between various racial and/or ethnic groups.Main Outcome Measures: The primary outcome of interest was in-hospital mortali­ty. The secondary outcome was non-routine discharge (discharge to destinations other than home, such as short-term hospitals or other facilities including intermediate care and skilled nursing homes).Results: Compared with White patients, in-hospital mortality was significantly higher among African American (OR 1.5; 95%CI:1.3-1.6, P<.001), Hispanic (OR1.4; 95%CI:1.3-1.6, P<.001), and Asian or Pacific Islander (OR 1.5; 95%CI: 1.1-1.9, P=.002) patients after adjustment for age and gender, Elixhauser comorbidities, do-not-resuscitate status, palliative care use, and socioeconomic status.Conclusions: Our study found that, among hospitalized patients with COVID-2019, African American, Hispanic, and Asian or Pacific Islander patients had increased mortality compared with White patients after adjusting for sociodemographic factors, comorbidities, and do-not-resuscitate/pallia­tive care status. Our findings add additional perspective to other recent studies. Ethn Dis. 2021;31(3):389-398; doi:10.18865/ed.31.3.389 
    more » « less
  2. Abstract Objective: The aim of this study was to investigate the performance of key hospital units associated with emergency care of both routine emergency and pandemic (COVID-19) patients under capacity enhancing strategies. Methods: This investigation was conducted using whole-hospital, resource-constrained, patient-based, stochastic, discrete-event, simulation models of a generic 200-bed urban U.S. tertiary hospital serving routine emergency and COVID-19 patients. Systematically designed numerical experiments were conducted to provide generalizable insights into how hospital functionality may be affected by the care of COVID-19 pandemic patients along specially designated care paths, under changing pandemic situations, from getting ready to turning all of its resources to pandemic care. Results: Several insights are presented. For example, each day of reduction in average ICU length of stay increases intensive care unit patient throughput by up to 24% for high COVID-19 daily patient arrival levels. The potential of 5 specific interventions and 2 critical shifts in care strategies to significantly increase hospital capacity is also described. Conclusions: These estimates enable hospitals to repurpose space, modify operations, implement crisis standards of care, collaborate with other health care facilities, or request external support, thereby increasing the likelihood that arriving patients will find an open staffed bed when 1 is needed. 
    more » « less
  3. Objective This paper investigates the impact on emergency hospital services from initiation through recovery of a ransomware attack affecting the emergency department, intensive care unit and supporting laboratory services. Recovery strategies of paying ransom to the attackers with follow-on restoration and in-house full system restoration from backup are compared. Methods A multi-unit, patient-based and resource-constrained discrete-event simulation model of a typical U.S. urban tertiary hospital is adapted to model the attack, its impacts, and tested recovery strategies. The model is used to quantify the hospital's resilience to cyberattack. Insights were gleaned from systematically designed numerical experiments. Results While paying the ransom was found to result in some short-term gains assuming the perpetrators actually provide the decryption key as promised, in the longer term, the results of this study suggest that paying the ransom does not pay off. Rather, paying the ransom, when considered at the end of the event when services are fully restored, precluded significantly more patients from receiving critically needed care. Also noted was a lag in recovery for the intensive care unit as compared with the emergency department. Such a lag must be considered in preparedness plans. Conclusion Vulnerability to cyberattacks is a major challenge to the healthcare system. This paper provides a methodology for assessing the resilience of a hospital to cyberattacks and analyzing the effects of different response strategies. The model showed that paying the ransom resulted in short-term gains but did not pay off in the longer term. 
    more » « less
  4. Abstract BackgroundCancer-care complexity heightens communication challenges between health care providers and patients, impacting their treatment adherence. This is especially evident upon hospital discharge in patients undergoing surgical procedures. Digital health tools offer potential solutions to address communication challenges seen in current discharge protocols. We aim to explore the usability and acceptability of an interactive health platform among discharged patients who underwent oncology-related procedures. MethodsA 4-week exploratory cohort study was conducted. Following hospital discharge, a tablet equipped with an integrated Personal Virtual Assistant (PVA) system was provided to patients who underwent oncology-related procedures. The PVA encompasses automated features that provide personalized care plans, developed through collaboration among clinicians, researchers, and engineers from various disciplines. These plans include guidance on daily specific assignments that were divided into 4 categories: medication intake, exercise,symptom surveys, and postprocedural specific tasks. The aim was to explore the acceptability of the PVA by quantification of dropout rate and assessing adherence to each care plan category throughout the study duration. The secondary aim assessed acceptability of the PVA through a technology acceptance model (TAM) questionnaire that examined ease of use, usefulness, attitude toward use, and privacy concerns. ResultsIn total, 17 patients were enrolled. However, 1 (5.8%) patient dropped out from the study after 3 days due to health deterioration, leaving 16/17 (94.2%) completing the study (mean age 54.5, SD 12.7, years; n=9, 52% Caucasian; n=14, 82% with a gynecological disease; n=3, 18% with a hepatobiliary disease). At the study end point, adherence to care plan categories were 78% (SD 25%) for medications, 81% (SD 24%) for exercises, 61% (SD 30%) for surveys, and 58% (SD 44%) for specific tasks such as following step-by step wound care instructions, managing drains, administering injectable medications independently, and performing pelvic baths as instructed. There was an 80% patient endorsement (strongly agree or agree) across all TAM categories. ConclusionThis study suggests the potential acceptability of the PVA among patients discharged after oncology-related procedures, with a dropout rate of less than 6% and fair-to-good adherence to tasks such as medication intake and exercise. However, these findings are preliminary due to the small sample size and highlight the need for further research with larger cohorts to validate and refine the system. 
    more » « less
  5. Unplanned intensive care units (ICU) readmissions and in-hospital mortality of patients are two important metrics for evaluating the quality of hospital care. Identifying patients with higher risk of readmission to ICU or of mortality can not only protect those patients from potential dangers, but also reduce the high costs of healthcare. In this work, we propose a new method to incorporate information from the Electronic Health Records (EHRs) of patients and utilize hyperbolic embeddings of a medical ontology (i.e., ICD-9) in the prediction model. The results prove the effectiveness of our method and show that hyperbolic embeddings of ontological concepts give promising performance. 
    more » « less