Abstract The frequency dependence of electrokinetic particle trapping using large‐area (>mm2) conductive carbon nanofiber (CNF) mat electrodes is investigated. The fibers provide nanoscale geometric features for the generation of high electric field gradients, which is necessary for particle trapping via dielectrophoresis (DEP). A device was fabricated with an array of microfluidic wells for repeated experiments; each well included a CNF mat electrode opposing an aluminum electrode. Fluorescent microspheres (1 µm) were trapped at various electric field frequencies between 30 kHz and 1 MHz. Digital images of each well were analyzed to quantify particle trapping. DEP trapping by the CNF mats was greater at all tested frequencies than that of the control of no applied field, and the greatest trapping was observed at a frequency of 600 kHz, where electrothermal flow is more significantly weakened than DEP. Theoretical analysis and measured impedance spectra indicate that this result was due to a combination of the frequency dependence of DEP and capacitive behavior of the well‐based device.
more »
« less
This content will become publicly available on February 18, 2026
Numerical Simulation Noise and Its Significant Impact on the Dielectrophoretic Motion of Particles Near the Electrode Edges
ABSTRACT Dielectrophoresis (DEP) has been extensively researched over the years for filtration, separation, detection, and collection of micro/nano/bioparticles. Numerical models have historically been employed to predict particle trajectories in three‐dimensional (3D) DEP systems, but a common issue arises due to inherent noise near the edges of electrodes due to electric potential discontinuity, specifically when calculating electric field and gradient of electric field‐squared, . This noise can be reduced to a certain extent with a finer mesh density but results near the electrode edge still have significant error. Realizing the importance of particle‐electrode edge interactions prevalent in positive DEP systems, analytical solutions given by Sun et al. was incorporated to demonstrate an improved 3D model of interdigitated electrodes. The results of electric field and gradient of electric field‐squared of the numerical model and the improved analytical 3D model were compared, within a simulation space of 50 µm height, 10 µm width, and 50 µm length with interdigitated electrodes of the same width and gap of 10 µm. The DEP particle trajectory error due to the noise was quantified for different particle sizes at various heights above the electrode edge. For example, at 5 Vrms, a trapped 500 nm particles exhibited a velocity error of 104µm/s (it should have been zero).
more »
« less
- Award ID(s):
- 2140245
- PAR ID:
- 10617020
- Publisher / Repository:
- Numerical Simulation Noise and Its Significant Impact on the Dielectrophoretic Motion of Particles Near the Electrode Edges
- Date Published:
- Journal Name:
- ELECTROPHORESIS
- ISSN:
- 0173-0835
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Dielectrophoresis (DEP) is a force applied to microparticles in nonuniform electric field. This study discusses the fabrication of the glassy carbon interdigitated microelectrode arrays using lithography process based on lithographic patterning and subsequent pyrolysis of negative SU-8 photoresist. Resulting high-resistance electrodes would have the regions of high electric field at the ends of microarray as demonstrated by simulation. The study demonstrates that combining the alternating current (AC) applied bias with the direct current (DC) offset allows the user to separate subpopulations of microparticulates and control the propulsion of microparticles to the high field areas such as the ends of the electrode array. The direction of the movement of the particles can be switched by changing the offset. The demonstrated novel integrated DEP separation and propulsion can be applied to various fields including in vitro diagnostics as well as to microassembly technologies.more » « less
-
Beskok, A. (Ed.)Dielectrophoresis (DEP) is a powerful tool for label-free sorting of cells, even those with subtle differences in morphological and dielectric properties. Nevertheless, a major limitation is that most existing DEP techniques can efficiently sort cells only at low throughputs (<1 mL h−1). Here, we demonstrate that the integration of a three-dimensional (3D) coupled hydrodynamic-DEP cell pre-focusing module upstream of the main DEP sorting region enables cell sorting with a 10-fold increase in throughput compared to conventional DEP approaches. To better understand the key principles and requirements for high-throughput cell separation, we present a comprehensive theoretical model to study the scaling of hydrodynamic and electrostatic forces on cells at high flow rate regimes. Based on the model, we show that the critical cell-to-electrode distance needs to be ≤10 µm for efficient cell sorting in our proposed microfluidic platform, especially at flow rates ≥ 1 mL h−1. Based on those findings, a computational fluid dynamics model and particle tracking analysis were developed to find optimum operation parameters (e.g., flow rate ratios and electric fields) of the coupled hydrodynamic-DEP 3D focusing module. Using these optimum parameters, we experimentally demonstrate live/dead K562 cell sorting at rates as high as 10 mL h−1 (>150,000 cells min−1) with 90% separation purity, 85% cell recovery, and no negative impact on cell viability.more » « less
-
Dielectrophoresis is a force applied to microparticles in non-uniform electric field. The presented study discusses the fabrication of the glassy carbon interdigitated microelectrode arrays using lithography process based on lithographic patterning and subsequent pyrolysis of negative SU-8 photoresist. Resulting high resistance electrodes would have the regions of high electric field at the ends of microarray as demonstrated by simulation. The study demonstrates that combining the AC applied bias with the DC offset allows the user to separate sub-populations of microparticulates and control the propulsion of microparticles to the high field areas such as the ends of the electrode array. The direction of the movement of the particles can be switched by changing the offset. The demonstrated novel integrated DEP separation and propulsion can be applied to various fields including in-vitro diagnostics as well as to microassembly technologies.more » « less
-
Abstract Circulating tumor cells (CTCs) have been proven to have significant prognostic, diagnostic, and clinical values in early‐stage cancer detection and treatment. The efficient separation of CTCs from peripheral blood can ensure intact and viable CTCs and can, thus, give proper genetic characterization and drug innovation. In this study, continuous and high‐throughput separation of MDA‐231 CTCs from overlapping sized white blood cells (WBCs) is achieved by modifying inertial cell focusing with dielectrophoresis (DEP) in a single‐stage microfluidic platform by numeric simulation. The DEP is enabled by embedding interdigitated electrodes with alternating field control on a serpentine microchannel to avoid creating two‐stage separation. Rather than using the electrokinetic migration of cells which slows down the throughput, the system leverages the inertial microfluidic flow to achieve high‐speed continuous separation. The cell migration and cell positioning characteristics are quantified through coupled physics analyses to evaluate the effects of the applied voltages and Reynolds numbers (Re) on the separation performance. The results indicate that the introduction of DEP successfully migrates WBCs away from CTCs and that separation of MDA‐231 CTCs from similar sized WBCs at a highReof 100 can be achieved with a low voltage of magnitude 4 ×106 V/m. Additionally, the viability of MDA‐231 CTCs is expected to be sustained after separation due to the short‐term DEP exposure. The developed technique could be exploited to design active microchips for high‐throughput separation of mixed cell beads despite their significant size overlap, using DEP‐modified inertial focusing controlled simply by adjusting the applied external field.more » « less
An official website of the United States government
