Image-to-Image translation in Generative Artificial Intelligence (Generative AI) has been a central focus of research, with applications spanning healthcare, remote sensing, physics, chemistry, photography, and more. Among the numerous methodologies, Generative Adversarial Networks (GANs) with contrastive learning have been particularly successful. This study aims to demonstrate that the Kolmogorov-Arnold Network (KAN) can effectively replace the Multi-layer Perceptron (MLP) method in generative AI, particularly in the subdomain of image-to-image translation, to achieve better generative quality. Our novel approach replaces the two-layer MLP with a two-layer KAN in the existing Contrastive Unpaired Image-to-Image Translation (CUT) model, developing the KAN-CUT model. This substitution favors the generation of more informative features in low-dimensional vector representations, which contrastive learning can utilize more effectively to produce high-quality images in the target domain. Extensive experiments, detailed in the results section, demonstrate the applicability of KAN in conjunction with contrastive learning and GANs in Generative AI, particularly for image-to-image translation. This work suggests that KAN could be a valuable component in the broader generative AI domain.
more »
« less
This content will become publicly available on May 5, 2026
The Dawn of KAN in Image-to-Image (I2I) Translation: Integrating Kolmogorov-Arnold Networks with GANs for Unpaired I2I Translation
More Like this
-
-
Image-to-Image translation in Generative Artificial Intelligence (Generative AI) has been a central focus of re- search, with applications spanning healthcare, remote sensing, physics, chemistry, photography, and more. Among the numerous methodologies, Generative Adversarial Networks (GANs) with contrastive learning have been particularly successful. This study aims to demonstrate that the Kolmogorov-Arnold Network (KAN) can effectively replace the Multi-layer Perceptron (MLP) method in generative AI, particularly in the subdomain of image-to-image translation, to achieve better generative quality. Our novel approach replaces the two-layer MLP with a two- layer KAN in the existing Contrastive Unpaired Image-to-Image Translation (CUT) model, developing the KAN-CUT model. This substitution favors the generation of more informative features in low-dimensional vector representations, which contrastive learn- ing can utilize more effectively to produce high-quality images in the target domain. Extensive experiments, detailed in the results section, demonstrate the applicability of KAN in conjunction with contrastive learning and GANs in Generative AI, particularly for image-to-image translation. This work suggests that KAN could be a valuable component in the broader generative AI domain.more » « less
-
Image-to-Image translation in Generative Artificial Intelligence (Generative AI) has been a central focus of re- search, with applications spanning healthcare, remote sensing, physics, chemistry, photography, and more. Among the numerous methodologies, Generative Adversarial Networks (GANs) with contrastive learning have been particularly successful. This study aims to demonstrate that the Kolmogorov-Arnold Network (KAN) can effectively replace the Multi-layer Perceptron (MLP) method in generative AI, particularly in the subdomain of image-to-image translation, to achieve better generative quality. Our novel approach replaces the two-layer MLP with a two- layer KAN in the existing Contrastive Unpaired Image-to-Image Translation (CUT) model, developing the KAN-CUT model. This substitution favors the generation of more informative features in low-dimensional vector representations, which contrastive learn- ing can utilize more effectively to produce high-quality images in the target domain. Extensive experiments, detailed in the results section, demonstrate the applicability of KAN in conjunction with contrastive learning and GANs in Generative AI, particularly for image-to-image translation. This work suggests that KAN could be a valuable component in the broader generative AI domain.more » « less
-
Recently, image-to-image translation (I2I) has met with great success in computer vision, but few works have paid attention to the geometric changes that occur during translation. The geometric changes are necessary to reduce the geometric gap between domains at the cost of breaking correspondence between translated images and original ground truth. We propose a novel geometry-aware semi-supervised method to preserve this correspondence while still allowing geometric changes. The proposed method takes a synthetic image-mask pair as input and produces a corresponding real pair. We also utilize an objective function to ensure consistent geometric movement of the image and mask through the translation. Extensive experiments illustrate that our method yields a 11.23% higher mean Intersection-Over-Union than the current methods on the downstream eye segmentation task. The generated image has a 15.9% decrease in Frechet Inception Distance indicating higher image quality.more » « less
An official website of the United States government
