skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: Automated Road Extraction from Satellite Imagery Integrating Dense Depthwise Dilated Separable Spatial Pyramid Pooling with DeepLabV3+
Road extraction is a sub-domain of remote sensing applications; it is a subject of extensive and ongoing research. The procedure of automatically extracting roads from satellite imagery encounters significant challenges due to the multi-scale and diverse structures of roads; improvement in this field is needed. Convolutional neural networks (CNNs), especially the DeepLab series known for its proficiency in semantic segmentation due to its efficiency in interpreting multi-scale objects’ features, address some of these challenges caused by the varying nature of roads. The present work proposes the utilization of DeepLabV3+, the latest version of the DeepLab series, by introducing an innovative Dense Depthwise Dilated Separable Spatial Pyramid Pooling (DenseDDSSPP) module and integrating it in the place of the conventional Atrous Spatial Pyramid Pooling (ASPP) module. This modification enhances the extraction of complex road structures from satellite images. This study hypothesizes that the integration of DenseDDSSPP with a CNN backbone network and a Squeeze-and-Excitation block will generate an efficient dense feature map by focusing on relevant features, leading to more precise and accurate road extraction from remote sensing images. The Results Section presents a comparison of our model’s performance against state-of-the-art models, demonstrating better results that highlight the effectiveness and success of the proposed approach.  more » « less
Award ID(s):
2018611 1920182
PAR ID:
10617056
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Applied Sciences
Volume:
15
Issue:
3
ISSN:
2076-3417
Page Range / eLocation ID:
1027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose GourmetNet, a single-pass, end-to-end trainable network for food segmentation that achieves state-of-the-art performance. Food segmentation is an important problem as the first step for nutrition monitoring, food volume and calorie estimation. Our novel architecture incorporates both channel attention and spatial attention information in an expanded multi-scale feature representation using our advanced Waterfall Atrous Spatial Pooling module. GourmetNet refines the feature extraction process by merging features from multiple levels of the backbone through the two attention modules. The refined features are processed with the advanced multi-scale waterfall module that combines the benefits of cascade filtering and pyramid representations without requiring a separate decoder or post-processing. Our experiments on two food datasets show that GourmetNet significantly outperforms existing current state-of-the-art methods. 
    more » « less
  2. null (Ed.)
    This article presents an online teaching tool that introduces students to basic concepts of remote sensing and its applications in hydrology. The learning module is intended for junior/senior undergraduate students or junior graduate students with no (or little) prior experience in remote sensing, but with some basic background of environmental science, hydrology, statistics, and programming. This e-learning environment offers background content on the fundamentals of remote sensing, but also integrates a set of existing online tools for visualization and analysis of satellite observations. Specifically, students are introduced to a variety of satellite products and techniques that can be used to monitor and analyze changes in the hydrological cycle. At completion of the module, students are able to visualize remote sensing data (both in terms of time series and spatial maps), detect temporal trends, interpret satellite images, and assess errors and uncertainties in a remote sensing product. Students are given the opportunity to check their understanding as they progress through the module and also tackle complex real-life problems using remote sensing observations that professionals and scientists commonly use in practice. The learning tool is implemented in HydroLearn, an open-source, online platform for instructors to find and share learning modules and collaborate on developing teaching resources in hydrology and water resources. 
    more » « less
  3. We describe a deep learning system for satellite image segmentation. Our CNN model embeds contextual feature dependencies in both spatial and frequency domains. Its Spatial Weighting Module uses a multi-scale pooling layer to represent correlations at longer length scales in the spatial domain. Its Frequency Weighting Module uses frequency-domain information to better discriminate between object classes. Experimental results on the Potsdam dataset demonstrate that our model has a 1.9% higher average F1 accuracy than previous methods. 
    more » « less
  4. Accurate road networks play a crucial role in modern mobile applications such as navigation and last-mile delivery. Most existing studies primarily focus on generating road networks in open areas like main roads and avenues, but little attention has been given to the generation of community road networks in closed areas such as residential areas, which becomes more and more significant due to the growing demand for door-to-door services such as food delivery. This lack of research is primarily attributed to challenges related to sensing data availability and quality. In this paper, we design a novel framework called SmallMap that leverages ubiquitous multi-modal sensing data from last-mile delivery to automatically generate community road networks with low costs. Our SmallMap consists of two key modules: (1) a Trajectory of Interest Detection module enhanced by exploiting multi-modal sensing data collected from the delivery process; and (2) a Dual Spatio-temporal Generative Adversarial Network module that incorporates Trajectory of Interest by unsupervised road network adaptation to generate road networks automatically. To evaluate the effectiveness of SmallMap, we utilize a two-month dataset from one of the largest logistics companies in China. The extensive evaluation results demonstrate that our framework significantly outperforms state-of-the-art baselines, achieving a precision of 90.5%, a recall of 87.5%, and an F1-score of 88.9%, respectively. Moreover, we conduct three case studies in Beijing City for courier workload estimation, Estimated Time of Arrival (ETA) in last-mile delivery, and fine-grained order assignment. 
    more » « less
  5. Dense time-series remote sensing data with detailed spatial information are highly desired for the monitoring of dynamic earth systems. Due to the sensor tradeoff, most remote sensing systems cannot provide images with both high spatial and temporal resolutions. Spatiotemporal image fusion models provide a feasible solution to generate such a type of satellite imagery, yet existing fusion methods are limited in predicting rapid and/or transient phenological changes. Additionally, a systematic approach to assessing and understanding how varying levels of temporal phenological changes affect fusion results is lacking in spatiotemporal fusion research. The objective of this study is to develop an innovative hybrid deep learning model that can effectively and robustly fuse the satellite imagery of various spatial and temporal resolutions. The proposed model integrates two types of network models: super-resolution convolutional neural network (SRCNN) and long short-term memory (LSTM). SRCNN can enhance the coarse images by restoring degraded spatial details, while LSTM can learn and extract the temporal changing patterns from the time-series images. To systematically assess the effects of varying levels of phenological changes, we identify image phenological transition dates and design three temporal phenological change scenarios representing rapid, moderate, and minimal phenological changes. The hybrid deep learning model, alongside three benchmark fusion models, is assessed in different scenarios of phenological changes. Results indicate the hybrid deep learning model yields significantly better results when rapid or moderate phenological changes are present. It holds great potential in generating high-quality time-series datasets of both high spatial and temporal resolutions, which can further benefit terrestrial system dynamic studies. The innovative approach to understanding phenological changes’ effect will help us better comprehend the strengths and weaknesses of current and future fusion models. 
    more » « less