Road extraction is a sub-domain of remote sensing applications; it is a subject of extensive and ongoing research. The procedure of automatically extracting roads from satellite imagery encounters significant challenges due to the multi-scale and diverse structures of roads; improvement in this field is needed. Convolutional neural networks (CNNs), especially the DeepLab series known for its proficiency in semantic segmentation due to its efficiency in interpreting multi-scale objects’ features, address some of these challenges caused by the varying nature of roads. The present work proposes the utilization of DeepLabV3+, the latest version of the DeepLab series, by introducing an innovative Dense Depthwise Dilated Separable Spatial Pyramid Pooling (DenseDDSSPP) module and integrating it in the place of the conventional Atrous Spatial Pyramid Pooling (ASPP) module. This modification enhances the extraction of complex road structures from satellite images. This study hypothesizes that the integration of DenseDDSSPP with a CNN backbone network and a Squeeze-and-Excitation block will generate an efficient dense feature map by focusing on relevant features, leading to more precise and accurate road extraction from remote sensing images. The Results Section presents a comparison of our model’s performance against state-of-the-art models, demonstrating better results that highlight the effectiveness and success of the proposed approach. 
                        more » 
                        « less   
                    
                            
                            SmallMap: Low-cost Community Road Map Sensing with Uncertain Delivery Behavior
                        
                    
    
            Accurate road networks play a crucial role in modern mobile applications such as navigation and last-mile delivery. Most existing studies primarily focus on generating road networks in open areas like main roads and avenues, but little attention has been given to the generation of community road networks in closed areas such as residential areas, which becomes more and more significant due to the growing demand for door-to-door services such as food delivery. This lack of research is primarily attributed to challenges related to sensing data availability and quality. In this paper, we design a novel framework called SmallMap that leverages ubiquitous multi-modal sensing data from last-mile delivery to automatically generate community road networks with low costs. Our SmallMap consists of two key modules: (1) a Trajectory of Interest Detection module enhanced by exploiting multi-modal sensing data collected from the delivery process; and (2) a Dual Spatio-temporal Generative Adversarial Network module that incorporates Trajectory of Interest by unsupervised road network adaptation to generate road networks automatically. To evaluate the effectiveness of SmallMap, we utilize a two-month dataset from one of the largest logistics companies in China. The extensive evaluation results demonstrate that our framework significantly outperforms state-of-the-art baselines, achieving a precision of 90.5%, a recall of 87.5%, and an F1-score of 88.9%, respectively. Moreover, we conduct three case studies in Beijing City for courier workload estimation, Estimated Time of Arrival (ETA) in last-mile delivery, and fine-grained order assignment. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2047822
- PAR ID:
- 10538835
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
- Volume:
- 8
- Issue:
- 2
- ISSN:
- 2474-9567
- Page Range / eLocation ID:
- 1 to 26
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Support for connected and autonomous vehicles (CAVs) is a major use case of 5G networks. Due to their large from factors, CAVs can be equipped with multiple radio antennas, cameras, LiDAR and other sensors. In other words, they are "giant" mobile integrated communications and sensing devices. The data collected can not only facilitate edge-assisted autonomous driving, but also enable intelligent radio resource allocation by cellular networks. In this paper we conduct an initial study to assess the feasibility of delivering multi-modal sensory data collected by vehicles over emerging commercial 5G networks. We carried out an "in-the-wild" drive test and data collection campaign between Minneapolis and Chicago using a vehicle equipped with a 360° camera, a LiDAR device, multiple smart phones and a professional 5G network measurement tool. Using the collected multi-modal data, we conduct trace-driven experiments in a local streaming testbed to analyze the requirements and performance of streaming multi-modal sensor data over existing 4G/5G networks. We reveal several notable findings and point out future research directions.more » « less
- 
            We introduce a novel approach to manipulate articulated objects with ambiguities, such as opening a door, in which multi-modality and occlusions create ambiguities about the opening side and direction. Multi-modality occurs when the method to open a fully closed door (push, pull, slide) is uncertain, or the side from which it should be opened is uncertain. Occlusions further obscure the door’s shape from certain angles, creating further ambiguities during the occlusion. To tackle these challenges, we propose a history-aware diffusion network that models the multi-modal distribution of the articulated object and uses history to disambiguate actions and make stable predictions under occlusions. Experiments and analysis demonstrate the state-of-art performance of our method and specifically improvements in ambiguity-caused failure modes. Our project website is available at https://flowbothd.github.io/.more » « less
- 
            null (Ed.)Management practices are one of the most important factors affecting forest structure and function. Landowners in southern United States manage forests using appropriately sized areas, to meet management objectives that include economic return, sustainability, and esthetic enjoyment. Road networks spatially designate the socio-environmental elements for the forests, which represented and aggregated as forest management units. Road networks are widely used for managing forests by setting logging roads and firebreaks. We propose that common types of forest management are practiced in road-delineated units that can be determined by remote sensing satellite imagery coupled with crowd-sourced road network datasets. Satellite sensors do not always capture road-caused canopy openings, so it is difficult to delineate ecologically relevant units based only on satellite data. By integrating citizen-based road networks with the National Land Cover Database, we mapped road-delineated management units across the regional landscape and analyzed the size frequency distribution of management units. We found the road-delineated units smaller than 0.5 ha comprised 64% of the number of units, but only 0.98% of the total forest area. We also applied a statistical similarity test (Warren’s Index) to access the equivalency of road-delineated units with forest disturbances by simulating a serious of neutral landscapes. The outputs showed that the whole southeastern U.S. has the probability of road-delineated unit of 0.44 and production forests overlapped significantly with disturbance areas with an average probability of 0.50.more » « less
- 
            The prevalent issue in urban trajectory data usage, notably in low-sample rate datasets, revolves around the accuracy of travel time estimations, traffic flow predictions, and trajectory similarity measurements. Conventional methods, often relying on simplistic mixes of static road networks and raw GPS data, fail to adequately integrate both network and trajectory dimensions. Addressing this, the innovative GRFTrajRec framework offers a graph-based solution for trajectory recovery. Its key feature is a trajectory-aware graph representation, enhancing the understanding of trajectory-road network interactions and facilitating the extraction of detailed embedding features for road segments. Additionally, GRFTrajRec's trajectory representation acutely captures spatiotemporal attributes of trajectory points. Central to this framework is a novel spatiotemporal interval-informed seq2seq model, integrating an attention-enhanced transformer and a feature differences-aware decoder. This model specifically excels in handling spatiotemporal intervals, crucial for restoring missing GPS points in low-sample datasets. Validated through extensive experiments on two large real-life trajectory datasets, GRFTrajRec has proven its efficacy in significantly boosting prediction accuracy and spatial consistency.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    