skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 1, 2026

Title: Trade-offs in transit public safety interventions: Balancing enforcement and service quality improvements
The slow rebound of public transit ridership since the pandemic and major upcoming budget shortfalls have created a perfect storm in which American cities and transit agencies must make difficult decisions regarding operations and service design. Among the many challenges, perceived rider safety has emerged as a key concern. However, implementing effective safety interventions is complicated by the mixed rider experiences with, and perceptions of, crime and law enforcement. Transit agencies can design more effective policy interventions if they understand what shapes riders’ reactions to different safety strategies, and how those strategies can promote rider satisfaction. Using a 2023 survey of 2292 transit riders in the Chicago region, we estimate a Bayesian Structural Equation Model to investigate the connections between rider experiences and demographics, receptiveness to safety measures, and overall satisfaction. We find that enforcement-related strategies are most strongly associated with higher overall rider satisfaction, but they also come with the notable downside of 10%–20% of riders feeling less safe. On the other hand, improvements to various facets of service quality are less strongly related to satisfaction, but they come with little to no downside in terms of negative rider perceptions. Rider experience also plays a role, with more severe crime and nuisance experience directly impacting satisfaction. In contrast, indirect knowledge of transit safety issues obtained from media and hearsay primarily affects riders’ support for safety interventions rather than their overall satisfaction.  more » « less
Award ID(s):
1847537
PAR ID:
10617105
Author(s) / Creator(s):
;
Publisher / Repository:
Transportation Research Part A
Date Published:
Journal Name:
Transportation Research Part A: Policy and Practice
Volume:
199
Issue:
C
ISSN:
0965-8564
Page Range / eLocation ID:
104584
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study investigated electric-scooter (e-scooter) rider behaviors and preferences to inform ways to increase safety for e-scooter riders. Data was collected from 329 e-scooter riders via two online and one in-person survey. Survey questions considered rider roadway infrastructure preferences, safety perceptions, and helmet-wearing behavior. Protected bike lanes were more commonly indicated as the safest infrastructure (62.4%) but were less likely to be the most preferred infrastructure (49.7%). Sidewalks were better matched between riders, indicating them as their preferred riding infrastructure (22.7%) and the perceived safest riding infrastructure (24.5%). Riders had low feelings of safety and preference for riding on major/neighborhood streets or on unprotected bike lanes. Riders reported significant concern about being hit by a moving vehicle, running into a pothole/rough roadway, and running into a moving vehicle. In line with the Theory of Planned Behavior, a significant relationship was found between the frequency of riding and helmet-wearing behavior, with more frequent riders being more likely to wear helmets. Findings suggest that existing roadway infrastructure may pose safety challenges and encourage rider-selected workarounds. Public policy may consider emphasizing protected bicycle lane development, rather than helmet mandates, to support e-scooter riding safety for all vulnerable road users. 
    more » « less
  2. Hebrard E., Musliu N. (Ed.)
    This study explores the design of an On-Demand Multimodal Transit System (ODMTS) that includes segmented mode switching models that decide whether potential riders adopt the new ODMTS or stay with their personal vehicles. It is motivated by the desire of transit agencies to design their network by taking into account both existing and latent demand, as quality of service improves. The paper presents a bilevel optimization where the leader problem designs the network and each rider has a follower problem to decide her best route through the ODMTS. The bilevel model is solved by a decomposition algorithm that combines traditional Benders cuts with combinatorial cuts to ensure the consistency of mode choices by the leader and follower problems. The approach is evaluated on a case study using historical data from Ann Arbor, Michigan, and a user choice model based on the income levels of the potential transit riders. 
    more » « less
  3. This paper studies how to integrate rider mode preferences into the design of on-demand multimodal transit systems (ODMTSs). It is motivated by a common worry in transit agencies that an ODMTS may be poorly designed if the latent demand, that is, new riders adopting the system, is not captured. This paper proposes a bilevel optimization model to address this challenge, in which the leader problem determines the ODMTS design, and the follower problems identify the most cost efficient and convenient route for riders under the chosen design. The leader model contains a choice model for every potential rider that determines whether the rider adopts the ODMTS given her proposed route. To solve the bilevel optimization model, the paper proposes an exact decomposition method that includes Benders optimal cuts and no-good cuts to ensure the consistency of the rider choices in the leader and follower problems. Moreover, to improve computational efficiency, the paper proposes upper and lower bounds on trip durations for the follower problems, valid inequalities that strengthen the no-good cuts, and approaches to reduce the problem size with problem-specific preprocessing techniques. The proposed method is validated using an extensive computational study on a real data set from the Ann Arbor Area Transportation Authority, the transit agency for the broader Ann Arbor and Ypsilanti region in Michigan. The study considers the impact of a number of factors, including the price of on-demand shuttles, the number of hubs, and access to transit systems criteria. The designed ODMTSs feature high adoption rates and significantly shorter trip durations compared with the existing transit system and highlight the benefits of ensuring access for low-income riders. Finally, the computational study demonstrates the efficiency of the decomposition method for the case study and the benefits of computational enhancements that improve the baseline method by several orders of magnitude. Funding: This research was partly supported by National Science Foundation [Leap HI Proposal NSF-1854684] and the Department of Energy [Research Award 7F-30154]. 
    more » « less
  4. We study (public) microtransit, a type of transportation service wherein a municipality offers point-to-point rides to residents, for a fixed, nominal fare. Microtransit exemplifies practical resource allocation problems that are often over-constrained in that not all ride requests (pickup and dropoff locations at specified times) can be satisfied or satisfied only by violating soft goals such as sustainability, and where economic signals (e.g., surge pricing) are not applicable—they would lead to unethical outcomes by effectively coercing poor people.We posit that instead of taking rider preferences as fixed, shaping them prosocially will lead to improved societal outcomes. Prosociality refers to an attitude or behavior that is intended to benefit others. This paper demonstrates a computational approach to prosociality in the context of a (public) microtransit service for disadvantaged riders. Prosociality appears as a willingness to adjust one’s pickup and dropoff times and locations to accommodate the schedules of others and to enable sharing rides (which increases the number of riders served with the same resources).This paper describes an interdisciplinary study of prosociality in microtransit between a transportation researcher, psychologists, a social scientist, and AI researchers. Our contributions are these: (1) empirical support for the viability of prosociality in microtransit (and constraints on it) through interviews with drivers and focus groups of riders; (2) a prototype mobile app demonstrating how our prosocial intervention can be combined with the transportation backend; (3) a reinforcement learning approach to model a rider and determine the best interventions to persuade that rider toward prosociality; and (4) a cognitive model of rider personas to enable evaluation of alternative interventions. 
    more » « less
  5. When demand increases beyond the system capacity, riders in ride-hailing/ride-sharing systems often experience long waiting time, resulting in poor customer satisfaction. This paper proposes a spatio-temporal pricing framework (AP-RTRS) to alleviate this challenge and shows how it naturally complements state-of-the-art dispatching and routing algorithms. Specifically, the pricing optimization model regulates demand to ensure that every rider opting to use the system is served within reason-able time: it does so either by reducing demand to meet the capacity constraints or by prompting potential riders to postpone service to a later time. The pricing model is a model-predictive control algorithm that works at a coarser temporal and spatial granularity compared to the real-time dispatching and routing, and naturally integrates vehicle relocations. Simulation experiments indicate that the pricing optimization model achieves short waiting times without sacrificing revenues and geographical fairness. 
    more » « less