skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 1, 2026

Title: There is more to the de Sitter horizon than just the area
A<sc>bstract</sc> It is well known that the area of the de Sitter cosmological horizon is related to the entropy of the bulk spacetime. Recent work has however shown that the horizon encodes more information about the bulk spacetime than just the entropy. In this work, we show that the horizon contains all of the gauge invariant (diffeomorphism and U(1)) information about (static albeit unstable) configurations of charged and rotating objects placed deep inside the de Sitter spacetime. We study highly symmetric objects, such as dipoles and cubes, built of objects with electric charge and angular momentum at their vertices. We show how these configurations affect the geometry of the cosmological horizon and imprint detailed information about the objects in the bulk onto the cosmological horizon.  more » « less
Award ID(s):
2210562
PAR ID:
10617331
Author(s) / Creator(s):
; ;
Publisher / Repository:
Journal of High Energy Physics
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2025
Issue:
7
ISSN:
1029-8479
Page Range / eLocation ID:
103
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> We study two-point functions of symmetric traceless local operators in the bulk of de Sitter spacetime. We derive the Källén-Lehmann spectral decomposition for any spin and show that unitarity implies its spectral densities are nonnegative. In addition, we recover the Källén-Lehmann decomposition in Minkowski space by taking the flat space limit. Using harmonic analysis and the Wick rotation to Euclidean Anti de Sitter, we derive an inversion formula to compute the spectral densities. Using the inversion formula, we relate the analytic structure of the spectral densities to the late-time boundary operator content. We apply our technical tools to study two-point functions of composite operators in free and weakly coupled theories. In the weakly coupled case, we show how the Källén-Lehmann decomposition is useful to find the anomalous dimensions of the late-time boundary operators. We also derive the Källén-Lehmann representation of two-point functions of spinning primary operators of a Conformal Field Theory on de Sitter. 
    more » « less
  2. A bstract The entropy of a de Sitter horizon was derived long ago by Gibbons and Hawking via a gravitational partition function. Since there is no boundary at which to define the temperature or energy of the ensemble, the statistical foundation of their approach has remained obscure. To place the statistical ensemble on a firm footing we introduce an artificial “York boundary”, with either canonical or microcanonical boundary conditions, as has been done previously for black hole ensembles. The partition function and the density of states are expressed as integrals over paths in the constrained, spherically reduced phase space of pure 3+1 dimensional gravity with a positive cosmological constant. Issues related to the domain and contour of integration are analyzed, and the adopted choices for those are justified as far as possible. The canonical ensemble includes a patch of spacetime without horizon, as well as configurations containing a black hole or a cosmological horizon. We study thermodynamic phases and (in)stability, and discuss an evolving reservoir model that can stabilize the cosmological horizon in the canonical ensemble. Finally, we explain how the Gibbons-Hawking partition function on the 4-sphere can be derived as a limit of well-defined thermodynamic ensembles and, from this viewpoint, why it computes the dimension of the Hilbert space of states within a cosmological horizon. 
    more » « less
  3. A<sc>bstract</sc> We propose an algebra of operators along an observer’s worldline as a background-independent algebra in quantum gravity. In that context, it is natural to think of the Hartle-Hawking no boundary state as a universal state of maximum entropy, and to define entropy in terms of the relative entropy with this state. In the case that the only spacetimes considered correspond to de Sitter vacua with different values of the cosmological constant, this definition leads to sensible results. 
    more » « less
  4. A<sc>bstract</sc> Finding string backgrounds with de Sitter spacetime, where all approximations and corrections are controlled, is an open problem. We revisit the search for de Sitter solutions in the classical regime for specific type IIB supergravity compactifications on group manifolds, an under-explored corner of the landscape that offers an interesting testing ground for swampland conjectures. While the supergravity de Sitter solutions we obtain numerically are ambiguous in terms of their classicality, we find an analytic scaling that makes four out of six compactification radii, as well as the overall volume, arbitrarily large. This potentially provides parametric control over corrections. If we could show that these solutions, or others to be found, are fully classical, they would constitute a counterexample to conjectures stating that asymptotic de Sitter solutions do not exist. We discuss this point in great detail. 
    more » « less
  5. A bstract Due to a well-known, but curious, minus sign in the Gibbons-Hawking first law for the static patch of de Sitter space, the entropy of the cosmological horizon is reduced by the addition of Killing energy. This minus sign raises the puzzling question how the thermodynamics of the static patch should be understood. We argue the confusion arises because of a mistaken interpretation of the matter Killing energy as the total internal energy, and resolve the puzzle by introducing a system boundary at which a proper thermodynamic ensemble can be specified. When this boundary shrinks to zero size the total internal energy of the ensemble (the Brown-York energy) vanishes, as does its variation. Part of this vanishing variation is thermalized, captured by the horizon entropy variation, and part is the matter contribution, which may or may not be thermalized. If the matter is in global equilibrium at the de Sitter temperature, the first law becomes the statement that the generalized entropy is stationary. 
    more » « less