skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A background-independent algebra in quantum gravity
A<sc>bstract</sc> We propose an algebra of operators along an observer’s worldline as a background-independent algebra in quantum gravity. In that context, it is natural to think of the Hartle-Hawking no boundary state as a universal state of maximum entropy, and to define entropy in terms of the relative entropy with this state. In the case that the only spacetimes considered correspond to de Sitter vacua with different values of the cosmological constant, this definition leads to sensible results.  more » « less
Award ID(s):
2207584
PAR ID:
10505046
Author(s) / Creator(s):
Publisher / Repository:
https://inspirehep.net/
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2024
Issue:
3
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> We construct a Type IIvon Neumann algebra that describes the largeNphysics of single-trace operators in AdS/CFT in the microcanonical ensemble, where there is no need to include perturbative 1/Ncorrections. Using only the extrapolate dictionary, we show that the entropy of semiclassical states on this algebra is holographically dual to the generalized entropy of the black hole bifurcation surface. From a boundary perspective, this constitutes a derivation of a special case of the QES prescription without any use of Euclidean gravity or replicas; from a purely bulk perspective, it is a derivation of the quantum-corrected Bekenstein-Hawking formula as the entropy of an explicit algebra in theG →0 limit of Lorentzian effective field theory quantum gravity. In a limit where a black hole is first allowed to equilibrate and then is later potentially re-excited, we show that the generalized second law is a direct consequence of the monotonicity of the entropy of algebras under trace-preserving inclusions. Finally, by considering excitations that are separated by more than a scrambling time we construct a “free product” von Neumann algebra that describes the semiclassical physics of long wormholes supported by shocks. We compute Rényi entropies for this algebra and show that they are equal to a sum over saddles associated to quantum extremal surfaces in the wormhole. Surprisingly, however, the saddles associated to “bulge” quantum extremal surfaces contribute with a negative sign. 
    more » « less
  2. A bstract We describe an algebra of observables for a static patch in de Sitter space, with operators gravitationally dressed to the worldline of an observer. The algebra is a von Neumann algebra of Type II 1 . There is a natural notion of entropy for a state of such an algebra. There is a maximum entropy state, which corresponds to empty de Sitter space, and the entropy of any semiclassical state of the Type II 1 algebras agrees, up to an additive constant independent of the state, with the expected generalized entropy S gen = ( A/ 4 G N ) + S out . An arbitrary additive constant is present because of the renormalization that is involved in defining entropy for a Type II 1 algebra. 
    more » « less
  3. A<sc>bstract</sc> We construct a novel flux tube entanglement entropy (FTE2), defined as the excess entanglement entropy relative to the vacuum of a region of color flux stretching between a heavy quark-anti-quark pair in pure gauge Yang-Mills theory. We show that FTE2can be expressed in terms of correlators of Polyakov loops, is manifestly gauge-invariant, and therefore free of the ambiguities in computations of the entanglement entropy in gauge theories related to the choice of the center algebra. Employing the replica trick, we compute FTE2for SU(2) Yang-Mills theory in (2+1)D and demonstrate that it is finite in the continuum limit. We explore the properties of FTE2for a half-slab geometry, which allows us to vary the width and location of the slab, and the extent to which the slab cross-cuts the color flux tube. Following the intuition provided by computations of FTE2in (1+1)D, and in a thin string model, we examine the extent to which our FTE2results can be interpreted as the sum of an internal color entropy and a vibrational entropy corresponding to the transverse excitations of the string. 
    more » « less
  4. A<sc>bstract</sc> We study 3d quantum gravity with two asymptotically anti-de Sitter regions, in particular, using its relation with coupled Alekseev-Shatashvili theories and Liouville theory. Expressions for the Hartle-Hawking state, thermal 2n-point functions, torus wormhole correlators and Wheeler-DeWitt wavefunctions in different bases are obtained using the ZZ boundary states in Liouville theory. Exact results in 2d Jackiw-Teitelboim (JT) gravity are uplifted to 3d gravity, with two copies of Liouville theory in 3d gravity playing a similar role as Schwarzian theory in JT gravity. The connection between 3d gravity and the Liouville ZZ boundary states are manifested by viewing BTZ black holes as Maldacena-Maoz wormholes, with the two wormhole boundaries glued along the ZZ boundaries. In this work, we also study the factorization problem of the Hartle-Hawking state in 3d gravity. With the relevant defect operator that imposes the necessary topological constraint for contractibility, the trace formula in gravity is modified in computing the entanglement entropy. This trace matches with the one from von Neumann algebra considerations, further reproducing the Bekenstein-Hawking area formula from entanglement entropy. Lastly, we propose a calculation for off-shell geometrical quantities that are responsible for the ramp behavior in the late time two-point functions, which follows from the understanding of the Liouville FZZT boundary states in the context of 3d gravity, and the identification between Verlinde loop operators in Liouville theory and “baby universe” operators in 3d gravity. 
    more » « less
  5. A bstract Recently Leutheusser and Liu [1, 2] identified an emergent algebra of Type III 1 in the operator algebra of $$ \mathcal{N} $$ N = 4 super Yang-Mills theory for large N . Here we describe some 1/ N corrections to this picture and show that the emergent Type III 1 algebra becomes an algebra of Type II ∞ . The Type II ∞ algebra is the crossed product of the Type III 1 algebra by its modular automorphism group. In the context of the emergent Type II ∞ algebra, the entropy of a black hole state is well-defined up to an additive constant, independent of the state. This is somewhat analogous to entropy in classical physics. 
    more » « less