skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: DB-PAISA: Discovery-Based Privacy-Agile IoT Sensing+Actuation
Internet of Things (IoT) devices are becoming increasingly commonplace in both public and semi-private settings. Currently, most such devices lack mechanisms that allow for their discovery by casual (nearby) users who are not owners or operators. However, these users are potentially being sensed, and/or actuated upon, by these devices, without their knowledge or consent. This triggers privacy, security, and safety issues. To address this problem, some recent work explored device transparency in the IoT ecosystem. The intuitive approach is for each device to periodically and securely broadcast (announce) its presence and capabilities to all nearby users. While effective, when no new users are present, this 𝑃𝑢𝑠ℎ-based approach generates a substantial amount of unnecessary network traffic and needlessly interferes with normal device operation. In this work, we construct DB-PAISA which addresses these issues via a 𝑃𝑢𝑙𝑙-based method, whereby devices reveal their presence and capabilities only upon explicit user request. Each device guarantees a secure timely response (even if fully compromised by malware) based on a small active Root-of-Trust (RoT). DB-PAISA requires no hardware modifications and is suitable for a range of current IoT devices. To demonstrate its feasibility and practicality, we built a fully functional and publicly available prototype. It is implemented atop a commodity MCU (NXP LCP55S69) and operates in tandem with a smartphone-based app. Using this prototype, we evaluate energy consumption and other performance factors.  more » « less
Award ID(s):
1956393
PAR ID:
10617395
Author(s) / Creator(s):
; ;
Publisher / Repository:
POPETS
Date Published:
Journal Name:
Proceedings on Privacy Enhancing Technologies
Volume:
2025
Issue:
2
ISSN:
2299-0984
Page Range / eLocation ID:
434 to 449
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The security of Internet-of-Things (IoT) devices in the residential environment is important due to their widespread presence in homes and their sensing and actuation capabilities. However, securing IoT devices is challenging due to their varied designs, deployment longevity, multiple manufacturers, and potentially limited availability of long-term firmware updates. Attackers have exploited this complexity by specifically targeting IoT devices, with some recent high-profile cases affecting millions of devices. In this work, we explore access control mechanisms that tightly constrain access to devices at the residential router, with the goal of precluding access that is inconsistent with legitimate users' goals. Since many residential IoT devices are controlled via applications on smartphones, we combine application sensors on phones with sensors at residential routers to analyze workflows. We construct stateful filters at residential routers that can require user actions within a registered smartphone to enable network access to an IoT device. In doing so, we constrain network packets only to those that are consistent with the user's actions. In our experiments, we successfully identified 100% of malicious traffic while correctly allowing more than 98% of legitimate network traffic. The approach works across device types and manufacturers with straightforward API and state machine construction for each new device workflow. 
    more » « less
  2. The Internet of Things provides household device users with an ability to connect and manage numerous devices over a common platform. However, the sheer number of possible privacy settings creates issues such as choice overload. This article outlines a data-driven approach to understand how users make privacy decisions in household IoT scenarios. We demonstrate that users are not just influenced by the specifics of the IoT scenario, but also by aspects immaterial to the decision, such as the default setting and its framing. 
    more » « less
  3. With their growing popularity, Internet-of-Things (IoT) devices have become attractive targets for attack. Like most modern software systems, IoT device firmware depends on external third-party libraries extensively, increasing the attack surface of IoT devices. Furthermore, we find that the risk is compounded by inconsistent library management practices and delays in applying security updates—sometimes hundreds of days behind the public availability of critical patches—by device vendors. Worse yet, because these dependencies are "baked into" the vendor-controlled firmware, even security-conscious users are unable to take matters into their own hands when it comes to good security hygiene. We present Capture, a novel architecture for deploying IoT device firmware that addresses this problem by allowing devices on a local network to leverage a centralized hub with third-party libraries that are managed and kept up-to-date by a single trusted entity. An IoT device supporting Capture comprises of two components: Capture-enabled firmware on the device and a remote driver that uses third-party libraries on the Capture hub in the local network. To ensure isolation, we introduce a novel Virtual Device Entity (VDE) interface that facilitates access control between mutually-distrustful devices that reside on the same hub. Our evaluation on a prototype implementation of Capture, along with 9 devices and 3 automation applets ported to our framework, shows that our approach incurs low overhead in most cases (<15% increased latency, <10% additional resources). We show that a single Capture Hub with modest hardware can support hundreds of devices, keeping their shared libraries up-to-date. 
    more » « less
  4. Computing is transitioning from single-user devices to the Internet of Things (IoT), in which multiple users with complex social relationships interact with a single device. Currently deployed techniques fail to provide usable access-control specification or authentication in such settings. In this paper, we begin reenvisioning access control and authentication for the home IoT. We propose that access control focus on IoT capabilities (i. e., certain actions that devices can perform), rather than on a per-device granularity. In a 425-participant online user study, we find stark differences in participants’ desired access-control policies for different capabilities within a single device, as well as based on who is trying to use that capability. From these desired policies, we identify likely candidates for default policies. We also pinpoint necessary primitives for specifying more complex, yet desired, access-control policies. These primitives range from the time of day to the current location of users. Finally, we discuss the degree to which different authentication methods potentially support desired policies. 
    more » « less
  5. Smart-home devices have become integral to daily routines, but their onboarding procedures - setting up a newly acquired smart device into operational mode - remain understudied. The heterogeneity of smart-home devices and their onboarding procedure can easily overwhelm users when they scale up their smart-home system. While Matter, the new IoT standard, aims to unify the smart-home ecosystem, it is still evolving, resulting in mixed compliance among devices. In this paper, we study the complexity of device onboarding from users' perspectives. We thus performed cognitive walkthroughs on 12 commercially available smart-home devices, documenting the commonality and distinctions of the onboarding process across these devices. We found that onboarding smart home devices can often be tedious and confusing. Users must devote significant time to creating an account, searching for the target device, and providing Wi-Fi credentials for each device they install. Matter-compatible devices are supposedly easier to manage, as they can be registered through one single hub independent of the vendor. Unfortunately, we found such a statement is not always true. Some devices still need their own companion apps and accounts to fully function. Based on our observations, we give recommendations about how to support a more user-friendly onboarding process. 
    more » « less