skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 1, 2026

Title: TinyCO2: High‐performance, low‐cost CO2 enrichment for field‐grown plants
Abstract Rising atmospheric CO2levels place terrestrial ecosystems under novel environmental conditions, and research in field settings is key to understanding how real plant communities will respond. Despite decades of progress in elevated CO2(eCO2) experiments, major gaps persist in our knowledge of plant responses to interacting influences of climate change, especially in areas outside North America and Western Europe.With a goal to expand access to field‐based eCO2research, we designed, built, and tested TinyCO2, a low‐cost field experiment for climate change research on plants. TinyCO2features sixteen 0.62‐m2plot areas, half with ambient and half with elevated (+200 ppm) CO2concentrations, and is suitable for short‐stature plants (≤0.5 m in height).Using a proportional‐integral control algorithm and constant sampling of air within the plots, TinyCO2achieves consistent elevation of [CO2] averaging +196.9 ppm. During testing, 95.1% of measured CO2concentrations fell within 20% of the setpoint (ambient CO2 + 200 ppm). A streamlined design and efficient use of instrumentation reduced the cost of the system to roughly one‐fifth of the cost of similar experiments from the past 30 years ($13.68 vs. $64.65 ppm−1 m−2, adjusted to 2024 USD).Our results demonstrate a system capable of precise and accurate field‐based CO2elevation for significantly reduced cost. We envision the TinyCO2design being implemented in a multitude of field‐based eCO2studies, perhaps as part of a globally distributed collaborative network experiment.  more » « less
Award ID(s):
2307341
PAR ID:
10617625
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Methods in Ecology and Evolution
Date Published:
Journal Name:
Methods in Ecology and Evolution
Volume:
16
Issue:
7
ISSN:
2041-210X
Page Range / eLocation ID:
1389 to 1396
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Global changes such as nitrogen (N) enrichment and elevated carbon dioxide (CO2) are known to exacerbate biodiversity loss in grassland ecosystems. They do so by modifying processes whose strength may vary at different spatial scales. Yet, whether and how global changes impact plant diversity at different spatial scales remains elusive.We collected data on species presence and cover at a high resolution in the third decade of a long‐term temperate grassland biodiversity—global change experiment. Based on the data, we constructed species—area relationships across three spatial orders of magnitude (from 0.01 to 3.24 m2) and compared them for the different global change treatments.We found that N enrichment, both under ambient and elevated CO2levels, decreased species richness across almost all spatial scales, with proportional decreases being largest at the smallest spatial scales. Elevated CO2also reduced richness at both ambient and enriched N supply rates but did so proportionally across all spatial scales. Suppression of diversity was stronger at all scales for diversity indices that include relative abundances than for species richness. Taken together, these results suggest that CO2and N are re‐organizing this grassland system by increasingly favouring, at fine scales, a small subset of dominant species.Synthesis: Our results highlight the role of spatial scales in influencing biodiversity loss, especially when it is driven by anthropogenic resource changes that might influence species interactions differently across spatial scales. 
    more » « less
  2. Summary Microalgae adapted to near‐zero temperatures and high light levels live on snowfields and glaciers worldwide. Snow algae have red‐colored pigments that darken snow surfaces, lowering its albedo and accelerating snowmelt. Despite their importance to the cryosphere, we know little about controls on snow algal productivity and biomass.Here, we characterize photophysiology from diverse natural field‐collected populations of alpine snow algae from the North Cascades of Washington, USA, where the major red‐bloom producing generaChlainomonas,Sanguina, andRosettawere present. We tested short‐term physiological responses of snow algae to light (0–3000 μmol m−2 s−1) and CO2levels (0–1600 ppm), allowing us to determine the saturating light and CO2levels for snow algal community net photosynthesis.All snow algal communities surveyed were adapted to extremely high light levels (3000 μmol m−2 s−1). In addition, photosynthesis rates of all the snow algal communities responded strongly to increasing CO2levels. At current atmospheric CO2levels (420 ppm), snow algal net photosynthesis rates were onlyc.50% saturated.Together, these results suggest the primary productivity of important bloom‐forming snow algal communities in alpine ecosystems will likely rise as atmospheric CO2concentrations increase, regardless of potential changes in available light levels. 
    more » « less
  3. Summary Rising atmospheric carbon dioxide concentrations (CO2) and atmospheric nitrogen (N) deposition have contrasting effects on ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) symbioses, potentially mediating forest responses to environmental change.In this study, we evaluated the cumulative effects of historical environmental change on N concentrations and δ15N values in AM plants, EM plants, EM fungi, and saprotrophic fungi using herbarium specimens collected in Minnesota, USA from 1871 to 2016. To better understand mycorrhizal mediation of foliar δ15N, we also analyzed a subset of previously published foliar δ15N values from across the United States to parse the effects of N deposition and CO2rise.Over the last century in Minnesota, N concentrations declined among all groups except saprotrophic fungi. δ15N also declined among all groups of plants and fungi; however, foliar δ15N declined less in EM plants than in AM plants. In the analysis of previously published foliar δ15N values, this slope difference between EM and AM plants was better explained by nitrogen deposition than by CO2rise.Mycorrhizal type did not explain trajectories of plant N concentrations. Instead, plants and EM fungi exhibited similar declines in N concentrations, consistent with declining forest N status despite moderate levels of N deposition. 
    more » « less
  4. Summary Low concentrations of CO2cause stomatal opening, whereas [CO2] elevation leads to stomatal closure. Classical studies have suggested a role for Ca2+and protein phosphorylation in CO2‐induced stomatal closing. Calcium‐dependent protein kinases (CPKs) and calcineurin‐B‐like proteins (CBLs) can sense and translate cytosolic elevation of the second messenger Ca2+into specific phosphorylation events. However, Ca2+‐binding proteins that function in the stomatal CO2response remain unknown.Time‐resolved stomatal conductance measurements using intact plants, and guard cell patch‐clamp experiments were performed.We isolatedcpkquintuple mutants and analyzed stomatal movements in response to CO2, light and abscisic acid (ABA). Interestingly, we found thatcpk3/5/6/11/23quintuple mutant plants, but not other analyzedcpkquadruple/quintuple mutants, were defective in high CO2‐induced stomatal closure and, unexpectedly, also in low CO2‐induced stomatal opening. Furthermore, K+‐uptake‐channel activities were reduced incpk3/5/6/11/23quintuple mutants, in correlation with the stomatal opening phenotype. However, light‐mediated stomatal opening remained unaffected, and ABA responses showed slowing in some experiments. By contrast, CO2‐regulated stomatal movement kinetics were not clearly affected in plasma membrane‐targetedcbl1/4/5/8/9quintuple mutant plants.Our findings describe combinatorialcpkmutants that function in CO2control of stomatal movements and support the results of classical studies showing a role for Ca2+in this response. 
    more » « less
  5. Summary Mosses hold a unique position in plant evolution and are crucial for protecting natural, long‐term carbon storage systems such as permafrost and bogs. Due to small stature, mosses grow close to the soil surface and are exposed to high levels of CO2, produced by soil respiration. However, the impact of elevated CO2(eCO2) levels on mosses remains underexplored.We determined the growth responses of the mossPhyscomitrium patensto eCO2in combination with different nitrogen levels and characterized the underlying physiological and metabolic changes.Three distinct growth characteristics, an early transition to caulonema, the development of longer, highly pigmented rhizoids, and increased biomass, define the phenotypic responses ofP. patensto eCO2. Elevated CO2impacts growth by enhancing the level of a sugar signaling metabolite, T6P. The quantity and form of nitrogen source influences these metabolic and phenotypic changes. Under eCO2,P. patensexhibits a diffused growth pattern in the presence of nitrate, but ammonium supplementation results in dense growth with tall gametophores, demonstrating high phenotypic plasticity under different environments.These results provide a framework for comparing the eCO2responses ofP. patenswith other plant groups and provide crucial insights into moss growth that may benefit climate change models. 
    more » « less