Abstract The heterogeneity of carbon dioxide (CO2) and methane (CH4) sources within and across watersheds presents a challenge to understanding the contributions of different ecosystem patch types to stream corridor and watershed carbon cycling. Changing hydrologic connections between corridor patches (e.g., streams, vernal pools, hillslopes) can influence stream corridor greenhouse gas emissions, but the spatiotemporal dynamics of emissions within and among corridor patches are not well‐quantified. To identify patterns and sources of carbon emissions across stream corridors, we measured gas concentrations and fluxes over two summers at Coweeta Hydrologic Laboratory, NC. We sampled CO2and CH4along four stream channels (including flowing and dry reaches), adjacent vernal pools, and riparian hillslopes. Stream CO2and CH4emissions were spatially heterogeneous. All streams were sources of CO2to the atmosphere (median = 97.2 mmol m−2d−1) but were sources or sinks of CH4depending on location (−0.19 to 4.57 mmol m−2d−1). CO2emissions were lower during the drier of two sampling years but were stable from month to month in the drier summer. CO2and CH4emissions also varied by both corridor and patch type; the presence of a vernal pool in the corridor had the strongest impact on emissions. Vernal pool patches emitted more CO2and CH4(246 and 1.95 mmol m−2d−1, respectively) than their adjacent streams. High resolution sampling of carbon fluxes from patches within and among stream corridors improves our understanding of the connections between terrestrial, riparian, and aquatic zones in a watershed and their contributions to overall catchment carbon emissions.
more »
« less
This content will become publicly available on May 1, 2026
CO 2 Emissions From Low Order Tundra Streams Stimulated by Surface‐Subsurface Connectivity Following Extreme Rainfall Events
Abstract Increases to summer Arctic rainfall and tundra thermal degradation are altering hydrological cycling in coastal watersheds with implications for carbon (C) cycling and transport of C to the atmosphere and coast. Arctic riverine research has focused on large rivers; however, small streams contribute significantly to vertical and longitudinal carbon dioxide (CO2) fluxes. Despite the well‐established connection between hydrology and biogeochemistry, the impact of extreme rainfall events on Arctic aquatic C cycling remains a knowledge gap. This study characterized how hydrology, biogeochemistry, and geomorphology control the supply of CO2to low order streams and their propensity to act as atmospheric CO2sources. We characterize biogeochemical and hydrologic processes in unique reaches from a beaded stream and stream impacted by thermal erosion. Rainfall and its resulting increases to terrestrial‐aquatic connectivity drove the movement of CO2and biodegradable dissolved organic C (BDOC) from soils into streams, however, BDOC mineralization only contributed a small portion of surface CO2fluxes. Rain events likely stimulated stream benthic respiration, which led to CO2contributions from net ecosystem production often exceeding surface CO2fluxes and downstream CO2transport. In addition, thermal degradation played a role in terrestrial‐aquatic connectivity of the streams. The erosion‐affected stream had inconsistent and smaller inputs of CO2, had weaker heterotrophic conditions, and smaller CO2emissions. Understanding how hydrologic regime, influenced by late summer rain events and stream morphology, controls the transport of CO2and metabolism in small tundra streams will help improve predictions of landscape scale CO2emissions from these critically understudied systems.
more »
« less
- Award ID(s):
- 2322664
- PAR ID:
- 10617665
- Publisher / Repository:
- Journal of Geophysical Research - Biogeosciences
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Biogeosciences
- Volume:
- 130
- Issue:
- 5
- ISSN:
- 2169-8953
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In the Arctic waterbodies are abundant and rapid thaw of permafrost is destabilizing the carbon cycle and changing hydrology. It is particularly important to quantify and accurately scale aquatic carbon emissions in arctic ecosystems. Recently available high-resolution remote sensing datasets capture the physical characteristics of arctic landscapes at unprecedented spatial resolution. We demonstrate how machine learning models can capitalize on these spatial datasets to greatly improve accuracy when scaling waterbody CO2and CH4fluxes across the YK Delta of south-west AK. We found that waterbody size and contour were strong predictors for aquatic CO2emissions, attributing greater than two-thirds of the influence to the scaling model. Small ponds (<0.001 km2) were hotspots of emissions, contributing fluxes several times their relative area, but were less than 5% of the total carbon budget. Small to medium lakes (0.001–0.1 km2) contributed the majority of carbon emissions from waterbodies. Waterbody CH4emissions were predicted by a combination of wetland landcover and related drivers, as well as watershed hydrology, and waterbody surface reflectance related to chromophoric dissolved organic matter. When compared to our machine learning approach, traditional scaling methods that did not account for relevant landscape characteristics overestimated waterbody CO2and CH4emissions by 26%–79% and 8%–53% respectively. This study demonstrates the importance of an integrated terrestrial-aquatic approach to improving estimates and uncertainty when scaling C emissions in the arctic.more » « less
-
Abstract Significant progress in permafrost carbon science made over the past decades include the identification of vast permafrost carbon stocks, the development of new pan‐Arctic permafrost maps, an increase in terrestrial measurement sites for CO2and methane fluxes, and important factors affecting carbon cycling, including vegetation changes, periods of soil freezing and thawing, wildfire, and other disturbance events. Process‐based modeling studies now include key elements of permafrost carbon cycling and advances in statistical modeling and inverse modeling enhance understanding of permafrost region C budgets. By combining existing data syntheses and model outputs, the permafrost region is likely a wetland methane source and small terrestrial ecosystem CO2sink with lower net CO2uptake toward higher latitudes, excluding wildfire emissions. For 2002–2014, the strongest CO2sink was located in western Canada (median: −52 g C m−2 y−1) and smallest sinks in Alaska, Canadian tundra, and Siberian tundra (medians: −5 to −9 g C m−2 y−1). Eurasian regions had the largest median wetland methane fluxes (16–18 g CH4m−2 y−1). Quantifying the regional scale carbon balance remains challenging because of high spatial and temporal variability and relatively low density of observations. More accurate permafrost region carbon fluxes require: (a) the development of better maps characterizing wetlands and dynamics of vegetation and disturbances, including abrupt permafrost thaw; (b) the establishment of new year‐round CO2and methane flux sites in underrepresented areas; and (c) improved models that better represent important permafrost carbon cycle dynamics, including non‐growing season emissions and disturbance effects.more » « less
-
Abstract Aquatic fluxes of carbon and nutrients link terrestrial and aquatic ecosystems. Within forests, storm events drive both the delivery of carbon and nitrogen to the forest floor and the export of these solutes from the land via streams. To increase understanding of the relationships between hydrologic event character and the relative fluxes of carbon and nitrogen in throughfall, stemflow and streams, we measured dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) concentrations in each flow path for 23 events in a forested watershed in Vermont, USA. DOC and TDN concentrations increased with streamflow, indicating their export was limited by water transport of catchment stores. DOC and TDN concentrations in throughfall and stemflow decreased exponentially with increasing precipitation, suggesting that precipitation removed a portion of available sources from tree surfaces during the events. DOC and TDN fluxes were estimated for 76 events across a 2‐year period. For most events, throughfall and stemflow fluxes greatly exceeded stream fluxes, but the imbalance narrowed for larger storms (>30 mm). The largest 10 stream events exported 40% of all stream event DOC whereas those same 10 events contributed 14% of all throughfall export. Approximately 2–5 times more DOC and TDN was exported from trees during rain events than left the catchment via streams annually. The diverging influence of event size on tree versus stream fluxes has important implications for forested ecosystems as hydrological events increase in intensity and frequency due to climate change.more » « less
-
Abstract High‐altitude tropical grasslands, known as “páramos,” are characterized by high solar radiation, high precipitation, and low temperature. They also exhibit some of the highest ecosystem carbon stocks per unit area on Earth. Recent observations have shown that páramos may be a net source of CO2to the atmosphere as a result of climate change; however, little is known about the source of this excess CO2in these mountainous environments or which landscape components contribute the most CO2. We evaluated the spatial and temporal variability of surface CO2fluxes to the atmosphere from adjacent terrestrial and aquatic environments in a high‐altitude catchment of Ecuador, based on a suite of field measurements performed during the wet season. Our findings revealed the importance of hydrologic dynamics in regulating the magnitude and likely fate of dissolved carbon in the stream. While headwater catchments are known to contribute disproportionately larger amounts of carbon to the atmosphere than their downstream counterparts, our study highlights the spatial heterogeneity of CO2fluxes within and between aquatic and terrestrial landscape elements in headwater catchments of complex topography. Our findings revealed that CO2evasion from stream surfaces was up to an order of magnitude greater than soil CO2efflux from the adjacent terrestrial environment. Stream carbon flux to the atmosphere appeared to be transport limited (i.e., controlled by flow characteristics, turbulent flow, and water velocity) in the upper reaches of the stream, and source limited (i.e., controlled by CO2and carbon availability) in the lower reaches of the stream. A 4‐m waterfall along the channel accounted for up to 35% of the total evasion observed along a 250‐m stream reach. These findings represent a first step in understanding ecosystem carbon cycling at the interface of terrestrial and aquatic ecosystems in high‐altitude, tropical, headwater catchments.more » « less
An official website of the United States government
