skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Brace Roots
Brace roots (roots developing from aerial stem nodes) are a type of adventitious root that develop from aboveground stem nodes in many monocots. Brace roots may remain aerial or penetrate the soil as they perform root functions such as anchorage and resource acquisition. Although brace root development in soil or aerial environments influences function, a lot is still unknown about how their anatomy, architecture and development contributes to their function. This article summarizes the current state of knowledge on brace roots.  more » « less
Award ID(s):
2109189 2040346
PAR ID:
10617673
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
WikiJourna;
Date Published:
Journal Name:
WikiJournal of Science
Volume:
7
Issue:
1
ISSN:
2470-6345
Page Range / eLocation ID:
X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Brace roots are a unique but poorly understood set of organs found in some large cereal crops such as maize. These roots develop from aerial stem nodes and can remain aerial or grow into the ground. Despite their name, the function of these roots to brace the plant was only recently shown. In this article, I discuss the current understanding of brace root function and development, as well as the multitude of open questions that remain about these fascinating organs. 
    more » « less
  2. Plants must be able to sense and respond to mechanical stresses encountered throughout their lifespan. The MscS-Like (MSL) family of mechanosensitive ion channels is one mechanism to perceive mechanical stresses. In maize, brace roots emerge from stem nodes above the soil and some remain aerial while some grow into the soil. We tested the hypothesis that MSL gene expression is higher in subterranean brace roots compared to those that remain aerial. However, there was no difference in MSL expression between the two environments. This work sets the foundation for a deeper understanding of MSL gene expression and function in maize. 
    more » « less
  3. Root lodging, the agronomic term for plant mechanical failure, causes yield loss in crops, including maize. Brace roots can provide structural support and assist in preventing root lodging. While the mechanics of brace roots (e.g., stiffness and strength) can play a role in their ability to prevent root lodging, there has been limited characterization of individual brace root mechanical properties. Methods to quantify root mechanics can thus be useful for characterizing maize mechanical traits and breeding new varieties with improved root anchorage and lodging resistance. Here, we describe a protocol for evaluating mechanical properties of maize brace roots. Specifically, we outline the steps necessary to perform three-point bend mechanical testing of maize brace roots using an Instron Universal Testing Stand. We describe root preparation, instrument setup, method establishment, testing, and data analysis. While we exemplify the protocol using maize brace roots, the approach can be adapted for assessing the mechanics of other plants or root types. 
    more » « less
  4. Plants have a remarkable ability to generate organs with a different identity to the parent organ, called ‘trans-organogenesis’. An example of trans-organogenesis is the formation of roots from stems (a type of adventitious root), which is the first type of root that arose during plant evolution. Despite being ancestral, stem-borne roots are often contextualised through lateral root research, implying that lateral roots precede adventitious roots. In this review we challenge that idea, highlight what is known about stem-borne root development across the plant kingdom, the remarkable diversity in form and function, and the many remaining evolutionary questions. Exploring stem-borne root evolutionary development can enhance our understanding of developmental decision making and the processes by which cells acquire their fates. 
    more » « less
  5. Abstract BackgroundThe use of 3D imaging techniques, such as X-ray CT, in root phenotyping has become more widespread in recent years. However, due to the complexity of the root structure, analyzing the resulting 3D volumes to obtain detailed architectural root traits remains a challenging computational problem. When it comes to image-based phenotyping of excavated maize root crowns, two types of root features that are notably missing from existing methods are the whorls and soil line. Whorls refer to the distinct areas located at the base of each stem node from which roots sprout in a circular pattern (Liu S, Barrow CS, Hanlon M, Lynch JP, Bucksch A. Dirt/3D: 3D root phenotyping for field-grown maize (zea mays). Plant Physiol. 2021;187(2):739–57.https://doi.org/10.1093/plphys/kiab311.). The soil line is where the root stem meets the ground. Knowledge of these features would give biologists deeper insights into the root system architecture (RSA) and the below- and above-ground root properties. ResultsWe developed TopoRoot+, a computational pipeline that produces architectural traits from 3D X-ray CT volumes of excavated maize root crowns. Building upon the TopoRoot software (Zeng D, Li M, Jiang N, Ju Y, Schreiber H, Chambers E, et al. Toporoot: A method for computing hierarchy and fine-grained traits of maize roots from 3D imaging. Plant Methods. 2021;17(1).https://doi.org/10.1186/s13007-021-00829-z.) for computing fine-grained root traits, TopoRoot + adds the capability to detect whorls, identify nodal roots at each whorl, and compute the soil line location. The new algorithms in TopoRoot + offer an additional set of fine-grained traits beyond those provided by TopoRoot. The addition includes internode distances, root traits at every hierarchy level associated with a whorl, and root traits specific to above or below the ground. TopoRoot + is validated on a diverse collection of field-grown maize root crowns consisting of nine genotypes and spanning across three years. TopoRoot + runs in minutes for a typical volume size of$$\:40{0}^{3}$$on a desktop workstation. Our software and test dataset are freely distributed on Github. ConclusionsTopoRoot + advances the state-of-the-art in image-based phenotyping of excavated maize root crowns by offering more detailed architectural traits related to whorls and soil lines. The efficiency of TopoRoot + makes it well-suited for high-throughput image-based root phenotyping. 
    more » « less