Soft robots employ flexible and compliant materials to perform adaptive tasks and navigate uncertain environments. However, soft robots are often unable to achieve forces and precision on the order of rigid-bodied robots. In this paper, we propose a new class of mobile soft robots that can reversibly transition between compliant and stiff states without reconfiguration. The robot can passively conform or actively control its shape, stiffen in its current configuration to function as a rigid-bodied robot, then return to its flexible form. The robotic structure consists of passive granular material surrounded by an active membrane. The membrane is composed of interconnected robotic sub-units that can control the packing density of the granular material and exploit jamming behaviors by varying the length of the interconnecting cables. Each robotic sub-unit uses a differential drive system to achieve locomotion and self-reconfigurability. We present the robot design and perform a set of locomotion and object manipulation experiments to characterize the robot's performance in soft and rigid states. We also introduce a simulation framework in which we model the jamming soft robot design and study the scalability of this class of robots. The proposed concept demonstrates the properties of both soft and rigid robots, and has the potential to bridge the gap between the two 
                        more » 
                        « less   
                    This content will become publicly available on March 10, 2026
                            
                            Combining and Decoupling Rigid and Soft Grippers to Enhance Robotic Manipulation
                        
                    
    
            For robot arms to perform everyday tasks in unstructured environments, these robots must be able to manipulate a diverse range of objects. Today’s robots often grasp objects with either soft grippers or rigid end-effectors. However, purely rigid or purely soft grippers have fundamental limitations as follows: soft grippers struggle with irregular heavy objects, whereas rigid grippers often cannot grasp small numerous items. In this article, we therefore introduce RISOs, a mechanics and controls approach for unifying traditional RIgid end-effectors with a novel class of SOft adhesives. When grasping an object, RISOs can use either the rigid end-effector (pinching the item between nondeformable fingers) and/or the soft materials (attaching and releasing items with switchable adhesives). This enhances manipulation capabilities by combining and decoupling rigid and soft mechanisms. With RISOs, robots can perform grasps along a spectrum from fully rigid, to fully soft, to rigid-soft, enabling real-time object manipulation across a 1.5 million times range in weight (from 2 mg to 2.9 kg). To develop RISOs, we first model and characterize the soft switchable adhesives. We then mount sheets of these soft adhesives on the surfaces of rigid end-effectors and develop control strategies that make it easier for robot arms and human operators to utilize RISOs. The resulting RISO grippers were able to pick up, carry, and release a larger set of objects than existing grippers, and participants also preferred using RISO. Overall, our experimental and user study results suggest that RISOs provide an exceptional gripper range in both capacity and object diversity. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2205241
- PAR ID:
- 10617809
- Publisher / Repository:
- Soft Robotics
- Date Published:
- Journal Name:
- Soft Robotics
- ISSN:
- 2169-5172
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            This work proposes a novel generative design tool for passive grippers---robot end effectors that have no additional actuation and instead leverage the existing degrees of freedom in a robotic arm to perform grasping tasks. Passive grippers are used because they offer interesting trade-offs between cost and capabilities. However, existing designs are limited in the types of shapes that can be grasped. This work proposes to use rapid-manufacturing and design optimization to expand the space of shapes that can be passively grasped. Our novel generative design algorithm takes in an object and its positioning with respect to a robotic arm and generates a 3D printable passive gripper that can stably pick the object up. To achieve this, we address the key challenge of jointly optimizing the shape and the insert trajectory to ensure a passively stable grasp. We evaluate our method on a testing suite of 22 objects (23 experiments), all of which were evaluated with physical experiments to bridge the virtual-to-real gap. Code and data are at https://homes.cs.washington.edu/~milink/passive-gripper/more » « less
- 
            Madden, John D.; Anderson, Iain A.; Shea, Herbert R. (Ed.)Ras Labs makes Synthetic Muscle™, which is a class of electroactive polymer (EAP) based materials and actuators that sense pressure (gentle touch to high impact), controllably contract and expand at low voltage (1.5 V to 50 V, including use of batteries), and attenuate force. We are in the robotics era, but robots do have their challenges. Currently, robotic sensing is mainly visual, which is useful up until the point of contact. To understand how an object is being gripped, tactile feedback is needed. For handling fragile objects, if the grip is too tight, breakage occurs, and if the grip is too loose, the object will slip out of the grasp, also leading to breakage. Rigid robotic grippers using a visual feedback loop can struggle to determine the exact point and quality of contact. Robotic grippers can also get a stuttering effect in the visual feedback loop. By using soft Synthetic Muscle™ based EAP pads as the sensors, immediate feedback was generated at the first point of contact. Because these pads provided a soft, compliant interface, the first point of contact did not apply excessive force, allowing the force applied to the object to be controlled. The EAP sensor could also detect a change in pressure location on its surface, making it possible to detect and prevent slippage by then adjusting the grip strength. In other words, directional glide provided feedback for the presence of possible slippage to then be able to control a slightly tighter grip, without stutter, due to both the feedback and the soft gentleness of the fingertip-like EAP pads themselves. The soft nature of the EAP fingertip pad also naturally held the gripped object, improving the gripping quality over rigid grippers without an increase in applied force. Analogous to finger-like tactile touch, the EAPs with appropriate coatings and electronics were positioned as pressure sensors in the fingertip or end effector regions of robotic grippers. This development of using Synthetic Muscle™ based EAPs as soft sensors provided for sensors that feel like the pads of human fingertips. Basic pressure position and magnitude tests have been successful, with pressure sensitivity down to 0.05 N. Most automation and robots are very strong, very fast, and usually need to be partitioned away from humans for safety reasons. For many repetitive tasks that humans do with delicate or fragile objects, it would be beneficial to use robotics; whether it is for agriculture, medical surgery, therapeutic or personal care, or in extreme environments where humans cannot enter, including with contagions that have no cure. Synthetic Muscle™ was also retrofitted as actuator systems into off-the-shelf robotic grippers and is being considered in novel biomimetic gripper designs, operating at low voltages (less than 50 V). This offers biomimetic movement by contracting like human muscles, but also exceeds natural biological capabilities by expanding under reversed electric polarity. Human grasp is gentle yet firm, with tactile touch feedback. In conjunction with shape-morphing abilities, these EAPs also are being explored to intrinsically sense pressure due to the correlation between mechanical force applied to the EAP and its electronic signature. The robotic field is experiencing phenomenal growth in this fourth phase of the industrial revolution, the robotics era. The combination of Ras Labs’ EAP shape-morphing and sensing features promises the potential for robotic grippers with human hand-like control and tactile sensing. This work is expected to advance both robotics and prosthetics, particularly for collaborative robotics to allow humans and robots to intuitively work safely and effectively together.more » « less
- 
            null (Ed.)Traditional parallel-jaw grippers are insufficient for delicate object manipulation due to their stiffness and lack of dexterity. Other dexterous robotic hands often have bulky fingers, rely on complex time-varying cable drives, or are prohibitively expensive. In this paper, we introduce a novel low-cost compliant gripper with two centimeter-scaled 3-DOF delta robots using off-the-shelf linear actuators and 3D-printed soft materials. To model the kinematics of delta robots with soft compliant links, which diverge from typical rigid links, we train neural networks using a perception system. Furthermore, we analyze the delta robot’s force profile by varying the starting position in its workspace and measuring the resulting force from a push action. Finally, we demonstrate the compliance and dexterity of our gripper through six dexterous manipulation tasks involving small and delicate objects. Thus, we present the groundwork for creating modular multi-fingered hands that can execute precise and low-inertia manipulations.more » « less
- 
            Vacuum-based end effectors are widely used in in- dustry and are often preferred over parallel-jaw and multifinger grippers due to their ability to lift objects with a single point of contact. Suction grasp planners often target planar surfaces on point clouds near the estimated centroid of an object. In this paper, we propose a compliant suction contact model that computes the quality of the seal between the suction cup and local target surface and a measure of the ability of the suction grasp to resist an external gravity wrench. To characterize grasps, we estimate robustness to perturbations in end-effector and object pose, material properties, and external wrenches. We analyze grasps across 1,500 3D object models to generate Dex- Net 3.0, a dataset of 2.8 million point clouds, suction grasps, and grasp robustness labels. We use Dex-Net 3.0 to train a Grasp Quality Convolutional Neural Network (GQ-CNN) to classify robust suction targets in point clouds containing a single object. We evaluate the resulting system in 350 physical trials on an ABB YuMi fitted with a pneumatic suction gripper. When eval- uated on novel objects that we categorize as Basic (prismatic or cylindrical), Typical (more complex geometry), and Adversarial (with few available suction-grasp points) Dex-Net 3.0 achieves success rates of 98%, 82%, and 58% respectively, improving to 81% in the latter case when the training set includes only adversarial objects. Code, datasets, and supplemental material can be found at http://berkeleyautomation.github.io/dex-net.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
