Woven smart textiles are useful in creating flexible electronics because they integrate circuitry into the structure of the fabric itself. However, there do not yet exist tools that support the specific needs of smart textiles weavers. This paper describes the process and development of AdaCAD, an application for composing smart textile weave drafts. By augmenting traditional weaving drafts, AdaCAD allows weavers to design woven structures and circuitry in tandem and offers specific support for common smart textiles techniques. We describe these techniques, how our tool supports them alongside feedback from smart textiles weavers. We conclude with a reflection on smart textiles practice more broadly and suggest that the metaphor of coproduction can be fruitful in creating effective tools and envisioning future applications in this space.
more »
« less
Exploring a Software Tool for Biofibers Design
The Biofibers Spinning Machine produces bio-based fibers (biofibers) that are dissolvable and biodegradable. These fibers enable recycling of smart textiles by making it easy to separate electronics from textiles. Currently, prototyping with the machine requires the use of low-level commands, i.e. G-code. To enable more people to participate in the sustainable smart textiles design space and develop new biofiber materials, we need to provide accessible tools and workflows. This work explores a software tool that facilitates material exploration with machine parameters. We describe the interface design and demonstrate using the tool to quantify the relationship between machine parameters and spun gelatin biofibers.
more »
« less
- Award ID(s):
- 2413631
- PAR ID:
- 10617818
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400707186
- Page Range / eLocation ID:
- 1 to 3
- Subject(s) / Keyword(s):
- sustainable smart textiles exploratory digital fabrication
- Format(s):
- Medium: X
- Location:
- Pittsburgh, PA USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Multifunctional fibers with high mechanical strength enable advanced applications of smart textiles, robotics, and biomedicine. Herein, we reported a one-step degumming method to fabricate strong, stiff, and humidity-responsive smart cellulosic fibers from abundant natural grass. The facile process involves partially removing lignin and hemicellulose functioning as glue in grass, which leads to the separation of vessels, parenchymal cells, and cellulosic fibers, where cellulosic fibers are manufactured at kilogram scale. The resulting fibers show dense and unidirectional fibril structure at both micro- and nano-scales, which demonstrate high tensile strength of ∼0.9 GPa and Young's modulus of 72 GPa, being 13- and 14-times higher than original grass. Inspired by stretchable plant tendrils, we developed a humidity-responsive actuator by engineering cellulosic fibers into the spring-like structures, presenting superior response rate and lifting capability. These strong and smart cellulosic fibers can be manufactured at large scale with low cost, representing promising a fiber material derived from renewable and sustainable biomass.more » « less
-
The development of fibrous actuators with diverse actuation modes is expected to accelerate progress in active textiles, robotics, wearable electronics, and haptics. Despite the advances in responsive polymer-based actuating fibers, the available actuation modes are limited by the exclusive reliance of current technologies on thermotropic contraction along the fiber axis. To address this gap, the present study describes a reversible and spontaneous thermotropic elongation (~30%) in liquid crystal elastomer fibers produced via ultraviolet-assisted melt spinning. This elongation arises from the orthogonal alignment of smectogenic mesogens relative to the fiber axis, which contrasts the parallel alignment typically observed in nematic liquid crystal elastomer fibers and is achieved through mesophase control during extrusion. The fibers exhibiting thermotropic elongation enable active textiles increase pore size in response to temperature increase. The integration of contracting and elongating fibers within a single textile enables spatially distinct actuation, paving the way for innovations in smart clothing and fiber/textile actuators.more » « less
-
Abstract Smart textiles are currently being pursued for actuation and sensing for their potential to directly incorporate “intelligence” into the fabric, in contrast to wearable technologies. In smart textiles, smart materials (e.g., piezoelectric) are formed into yarns that are woven into fabrics for clothing. One immediate requirement for such textiles is their stability during washing cycles, as expected of any clothing items, which has been largely lacking so far. Here, we investigate the washing stability of nanofibrous piezoelectric textiles. Our results reveal that electrospun textiles exhibit remarkable structural stability from the fiber microstructure to the textile level. Overall fiber crystalline composition and electroactive phase remain stable within 1% of ~47% and ~85%, respectively. Mechanically, the textile displays sustained performance, with only negligible changes observed. The yield strain and stress only show a ~8% and 9% differences, respectively. Moreover, piezoelectric stability is confirmed through phase preservation and slight variation in voltage output of ~6%. These results prove the candidacy that the processing of electrospun polyvinylidene fluoride (PVDF) fibers to woven textiles is applicable to the demands of smart textiles, which is expected to accelerate the commercialization of such textiles for wearable robotics and health monitoring.more » « less
-
Abstract Smart textiles that sense, interact, and adapt to environmental stimuli have provided exciting new opportunities for a variety of applications. However, current advances have largely remained at the research stage due to the high cost, complexity of manufacturing, and uncomfortableness of environment‐sensitive materials. In contrast, natural textile materials are more attractive for smart textiles due to their merits in terms of low cost and comfortability. Here, water fog and humidity‐driven torsional and tensile actuation of thermally set twisted, coiled, plied silk fibers, and weave textiles from these silk fibers are reported. When exposed to water fog, the torsional silk fiber provides a fully reversible torsional stroke of 547° mm−1. Coiled‐and‐thermoset silk yarns provide a 70% contraction when the relative humidity is changed from 20% to 80%. Such an excellent actuation behavior originates from water absorption‐induced loss of hydrogen bonds within the silk proteins and the associated structural transformation, which are corroborated by atomistic and macroscopic characterization of silk and molecular dynamics simulations. With its large abundance, cost‐effectiveness, and comfortability for wearing, the silk muscles will open up additional possibilities in industrial applications, such as smart textiles and soft robotics.more » « less
An official website of the United States government

