skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evolution of Shear bands in Saturated Sand Tested using Triaxial Compression
The failure of sheared granular materials is manifested in zones of intensive shearing known as shear bands. The onset and evolution of shear bands are influenced by many factors including specimen density, particle morphology, gradation, boundary conditions, and loading conditions. This paper investigated how particle morphology and drainage condition (drained versus undrained) affect the evolution of shear bands for saturated sand.  more » « less
Award ID(s):
2016392
PAR ID:
10617973
Author(s) / Creator(s):
;
Publisher / Repository:
ICTMS2024: International Conference on Tomography of Materials and Structures
Date Published:
Format(s):
Medium: X
Location:
Cape Town, South Africa
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigate the flow evolution of a linear and a branched wormlike micellar solution with matched rheology in a Taylor–Couette (TC) cell using a combination of particle-tracking velocimetry, birefringence, and turbidity measurements. Both solutions exhibit a stress plateau within a range of shear rates. Under startup of a steady shear rate flow within the stress plateau, both linear and branched samples exhibit strong transient shear thinning flow profiles. However, while the flow of the linear solution evolves to a banded structure at longer times, the flow of the branched solution transitions to a curved velocity profile with no evidence of shear banding. Flow-induced birefringence measurements indicate transient birefringence banding with strong micellar alignment in the high shear band for the linear solution. The transient flow-induced birefringence is stronger for the branched system at an otherwise identical Wi. At longer times, the birefringence bands are replaced by a chaotic flow reminiscent of elastic instabilities. Visualization of the flow-induced turbidity in the velocity gradient-vorticity plane reveals quasi-steady banding with a turbidity contrast between high and low shear bands in the linear solution. However, the turbidity evolves uniformly within the gap of the TC cell for the branched solution, corroborating the non-banded quasi-steady velocimetry results. Finally, we show that while elastic instabilities in the linear solution emerge in the high shear band, the flow of branched solution at high Wi becomes unstable due to end effects, with growing end regions that ultimately span the entire axial length of the TC cell. 
    more » « less
  2. Abstract Variability of ice microphysical properties like crystal size and density in cirrus clouds is important for climate through its impact on radiative forcing, but challenging to represent in models. For the first time, recent laboratory experiments of particle growth (tied to crystal morphology via deposition density) are combined with a state‐of‐the‐art Lagrangian particle‐based microphysics model in large‐eddy simulations to examine sources of microphysical variability in cirrus. Simulated particle size distributions compare well against balloon‐borne observations. Overall, microphysical variability is dominated by variability in the particles' thermodynamic histories. However, diversity in crystal morphology notably increases spatial variability of mean particle size and density, especially at mid‐levels in the cloud. Little correlation between instantaneous crystal properties and supersaturation occurs even though the modeled particle morphology is directly tied to supersaturation based on laboratory measurements. Thus, the individual thermodynamic paths of each particle, not the instantaneous conditions, control the evolution of particle properties. 
    more » « less
  3. Summary Geomaterials such as sand and clay are highly heterogeneous multiphase materials. Nonlocality (or a characteristic length scale) in modeling geomaterials based on the continuum theory can be associated with several factors, for instance, the physical interactions of material points within finite distance, the homogenization or smoothing process of material heterogeneity, and the particle or problem size‐dependent mechanical behavior (eg, the thickness of shear bands) of geomaterials. In this article, we formulate a nonlocal elastoplastic constitutive model for geomaterials by adapting a local elastoplastic model for geomaterials at a constant suction through the constitutive correspondence principle of the state‐based peridynamics theory. We numerically implement this nonlocal constitutive model via the classical return‐mapping algorithm of computational plasticity. We first conduct a one‐dimensional compression test of a soil sample at a constant suction through the numerical model with three different values of the nonlocal variable (horizon)δ. We then present a strain localization analysis of a soil sample under the constant suction and plane strain conditions with different nonlocal variables. The numerical results show that the proposed nonlocal model can be used to simulate the inception and propagation of shear banding as well as to capture the thickness of shear bands in geomaterials at a constant suction. 
    more » « less
  4. Direct particle models are a promising tool for predicting microstructural properties of fiber reinforced composites. In order to validate our modeling approach for fiber orientation prediction, compression molded reinforced Polypropylene samples were subjected to a simple shear flow in a Sliding Plate Rheometer. Micro computed tomography was used to measure the orientation tensor for deformations up to 60 shear strain units. The fully characterized microstructure at zero shear strain was used to reproduce the initial conditions in the particle simulation. Fibers were placed in a periodic boundary cell and a flow field matching the experiment was applied. Samples created with the proposed compression molding technique showed repeatable and controlled initial orientation. The model showed good agreement with the steady state orientation; however, it showed a faster orientation evolution at the start of the shearing process. 
    more » « less
  5. Abstract Deformation and fracture of metallic glasses are often modeled by stress-based criteria which often incorporate some sorts of pressure dependence. However, detailed mechanisms that are responsible for the shear-band formation and the entire damage initiation and evolution process are complex and the origin of such a pressure dependence is obscure. Here, we argue that the shear-band formation results from the constitutive instability, so that the shear-band angle and arrangements can be easily related to the macroscopic constitutive parameters such as internal friction and dilatancy factor. This is one reason for the observed tension-compression asymmetry in metallic glasses. The free volume coalescence leads to precipitous formation of voids or cavities inside the shear bands, and the intrinsic “ductility” is therefore governed by the growth of these cavities. Based on a generalized Stokes–Hookean analogy, we can derive the critical shear-band failure strain with respect to the applied stress triaxiality, in which the cavity evolution scenarios are sharply different between tension-controlled and shear/compression-dominated conditions. This is another possible reason for the tension-compression asymmetry. It is noted that diffusive-controlled cavity growth could also be the rate-determining process, as suggested by the recent measurements of shear-band diffusivity and viscosity that turn out to satisfy the Stokes–Einstein relationship. This constitutes the third possible reason for the tension-compression asymmetry. 
    more » « less