skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multi-Channel Nonlinearity Mitigation Using Neural-Network-Based Feedback Cancellation with Channel Decision Passing Algorithm
Award ID(s):
2148354
PAR ID:
10618006
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-8717-9
Page Range / eLocation ID:
286 to 290
Format(s):
Medium: X
Location:
Springfield, MA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. The turbulent channel flow database is produced from a direct numerical simulation (DNS) of wall bounded flow with periodic boundary conditions in the longitudinal and transverse directions, and no-slip conditions at the top and bottom walls. In the simulation, the Navier-Stokes equations are solved using a wall {normal, velocity {vorticity formulation. Solutions to the governing equations are provided using a Fourier-Galerkin pseudo-spectral method for the longitudinal and transverse directions and seventh-order Basis-splines (B-splines) collocation method in the wall normal direction. De-aliasing is performed using the 3/2-rule [3]. Temporal integration is performed using a low-storage, third-order Runge-Kutta method. Initially, the flow is driven using a constant volume flux control (imposing a bulk channel mean velocity of U = 1) until stationary conditions are reached. Then the control is changed to a constant applied mean pressure gradient forcing term equivalent to the shear stress resulting from the prior steps. Additional iterations are then performed to further achieve statistical stationarity before outputting fields. 
    more » « less