skip to main content


Search for: All records

Award ID contains: 2148354

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Liva, Gianluigi (Ed.)
    Unsourced random access emerged as a novel wireless paradigm enabling massive device connectivity on the uplink. We consider quasi-static Rayleigh fading wherein the access point has multiple receive antennas and every mobile device a single transmit antenna. The objective is to construct a coding scheme that minimizes the energy-per-bit subject to a maximum probability of error given a fixed message length and a prescribed number of channel uses. Every message is partitioned into two parts: the first determines pilot values and spreading sequences; the remaining bits are encoded using a polar code. The transmitted signal contains two distinct sections. The first features pilots and the second is composed of spread modulated symbols. The receiver has three modules: an energy detector, tasked with recovering the set of active pilot sequences; a bank of Minimum Mean Square Error (MMSE) estimators acting on measurements at the receiver; and a polar list-decoder, which seeks to retrieve the coded information bits. A successive cancellation step is applied to subtract recovered codewords, before the residual signal is fed back to the decoder. Empirical evidence suggests that an appropriate combination of these ideas can outperform state-of-the-art coding techniques when the number of active users exceeds one hundred. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  2. Free, publicly-accessible full text available July 1, 2024
  3. We explore a scheme that enables the training of a deep neural network in a Federated Learning configuration over an additive white Gaussian noise channel. The goal is to create a low complexity, linear compression strategy, called PolarAir, that reduces the size of the gradient at the user side to lower the number of channel uses needed to transmit it. The suggested approach belongs to the family of compressed sensing techniques, yet it constructs the sensing matrix and the recovery procedure using multiple access techniques. Simulations show that it can reduce the number of channel uses by ∼30% when compared to conveying the gradient without compression. The main advantage of the proposed scheme over other schemes in the literature is its low time complexity. We also investigate the behavior of gradient updates and the performance of PolarAir throughout the training process to obtain insight on how best to construct this compression scheme based on compressed sensing. 
    more » « less