Single crystals of a new transition metal adelite-descloizite-type structure were synthesized using a high temperature (580 °C) high-pressure hydrothermal technique. Single crystal X-ray diffraction and energy dispersive X-ray analysis (EDX) were used to investigate the structure and elemental composition, respectively. SrNi(VO4)(OH) crystallizes in an acentric orthorhombic crystal system in the space group P212121 (no. 19); Z = 4, a = 5.9952(4) Å, b = 7.5844(4) Å, c = 9.2240(5) Å. The structure is comprised of a Ni–O–V framework where Sr2+ ions reside inside the channels. Single-crystal magnetic measurements display a significant anisotropy in both temperature- and field-dependent data. The temperature dependent magnetic measurement shows antiferromagnetic behavior at TN~8 K. Overall, the magnetic properties indicate the presence of competing antiferromagnetic and ferromagnetic interactions of SrNi(VO4)(OH).
more »
« less
This content will become publicly available on January 7, 2026
Surface structure characterization of rubrene(001) single crystal with sum frequency generation spectroscopy and reflection high-energy electron diffraction
Rubrene is one of the leading organic semiconductors in scientific and industrial research, showing good conductivities and utilities in devices such as organic field-effect transistors. In these applications, the rubrene crystals often contact ionic liquids and other materials. Consequently, their surface properties and interfacial interactions influence the device’s performance. Although rubrene has been extensively studied with multiple structure characterization techniques, a complete description of the structure of rubrene single-crystal surfaces at the molecular level remains elusive. This study elucidates the molecular orientation and arrangement on the surface of rubrene single crystals with sum frequency generation (SFG) spectroscopy and reflection high-energy electron diffraction, respectively. The results confirm the near-surface unit cells with in-plane lattice parameters of a = 7.24 Å and b = 14.3 Å and an out-of-plane constant of c = 26.9 Å. Furthermore, the SFG analysis yields the tilt and rotation angles of θ = 15° and φ = 43° with respect to the crystalline c and a axes, respectively, and an in-plane twist of ψ = 3° for the surface phenyl rings.
more »
« less
- PAR ID:
- 10618068
- Publisher / Repository:
- AIP Publishing
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 162
- Issue:
- 1
- ISSN:
- 0021-9606
- Page Range / eLocation ID:
- 014701
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The molecular structure of the title compound, C 11 H 15 NO 2 S, features a sulfonamide group with S=O bond lengths of 1.4357 (16) and 1.4349 (16) Å, an S—N bond length of 1.625 (2) Å, and an S—C bond length of 1.770 (2) Å. When viewing the molecule down the S—N bond, both N—C bonds of the pyrrolidine ring are oriented gauche to the S—C bond with torsion angles of −65.6 (2)° and 76.2 (2)°. The crystal structure features both intra- and intermolecular C—H...O hydrogen bonds, as well as intermolecular C—H...π and π–π interactions, leading to the formation of sheets parallel to the ac plane.more » « less
-
Materials that undergo singlet fission are of interest for their use in light-harvesting, photocatalysis, and quantum information science, but their ability to undergo fission can be sensitive to local variations in molecular packing. Herein we employ transient absorption microscopy, molecular dynamics simulations, and electronic structure calculations to interrogate how structures found at the edges of orthorhombic rubrene crystals impact singlet fission. Within a micrometer-scale spatial region at the edges of rubrene crystals, we find that the rate of singlet fission increases nearly 4-fold. This observation is consistent with formation of a region at crystal edges with reduced order that accelerates singlet fission by disrupting the symmetry found in rubrene’s orthorhombic crystal structure. Our work demonstrates that structural distortions of singlet fission materials can be used to control fission in time and in space, potentially offering a means of controlling this process in light harvesting and quantum information applications.more » « less
-
Rubrene untwisted: common density functional theory calculations overestimate its deviant tendenciesnull (Ed.)The exceptionally high carrier mobility of rubrene derives from the combination of its intrinsic electronic properties and favorable crystal packing that facilitates charge transport. Unlike the planar conformations adopted by rubrene single crystals, however, many rubrene derivatives crystallize with a twisted tetracene core and exhibit poor carrier mobility. Typical density functional theory (DFT) calculations suggest that the twisted conformation is preferred by ∼10–14 kJ mol −1 or more in the gas phase. However, the present work shows that those calculations overestimate the twisting energy by several kJ mol −1 due to density-driven delocalization error, and that the twisting energies are actually only ∼8–10 kJ mol −1 for typical rubrene derivatives when computed with higher-level correlated wave function models. This result has two significant implications for crystal engineering with rubrene derivatives: first, DFT calculations can erroneously predict polymorphs containing twisted rubrene conformations to be more stable, when in fact structures with planar conformations are preferred, as is demonstrated here for perfluororubrene. Second, the smaller twisting energies make it more likely that solid form screening could discover new planar-core polymorphs of rubrene derivatives that have previously been crystallized only in a twisted conformation. These in turn might exhibit better organic semiconducting properties.more » « less
-
Abstract Utilizing the intrinsic mobility–strain relationship in semiconductors is critical for enabling strain engineering applications in high‐performance flexible electronics. Here, measurements of Hall effect and Raman spectra of an organic semiconductor as a function of uniaxial mechanical strain are reported. This study reveals a very strong, anisotropic, and reversible modulation of the intrinsic (trap‐free) charge carrier mobility of single‐crystal rubrene transistors with strain, showing that the effective mobility of organic circuits can be enhanced by up to 100% with only 1% of compressive strain. Consistently, Raman spectroscopy reveals a systematic shift of the low‐frequency Raman modes of rubrene to higher (lower) frequencies with compressive (tensile) strain, which is indicative of a reduction (enhancement) of thermal molecular disorder in the crystal with strain. This study lays the foundation of the strain engineering in organic electronics and advances the knowledge of the relationship between the carrier mobility, low‐frequency vibrational modes, strain, and molecular disorder in organic semiconductors.more » « less
An official website of the United States government
