Abstract The Witt algebra $${\mathfrak{W}}_{n}$$ is the Lie algebra of all derivations of the $$n$$-variable polynomial ring $$\textbf{V}_{n}=\textbf{C}[x_{1}, \ldots , x_{n}]$$ (or of algebraic vector fields on $$\textbf{A}^{n}$$). A representation of $${\mathfrak{W}}_{n}$$ is polynomial if it arises as a subquotient of a sum of tensor powers of $$\textbf{V}_{n}$$. Our main theorems assert that finitely generated polynomial representations of $${\mathfrak{W}}_{n}$$ are noetherian and have rational Hilbert series. A key intermediate result states polynomial representations of the infinite Witt algebra are equivalent to representations of $$\textbf{Fin}^{\textrm{op}}$$, where $$\textbf{Fin}$$ is the category of finite sets. We also show that polynomial representations of $${\mathfrak{W}}_{n}$$ are equivalent to polynomial representations of the endomorphism monoid of $$\textbf{A}^{n}$$. These equivalences are a special case of an operadic version of Schur–Weyl duality, which we establish.
more »
« less
This content will become publicly available on July 22, 2026
Finite generation of split-F-regular$\text{split-}F\text{-regular}$ monoid algebras
Abstract Let be a submonoid of a free Abelian group of finite rank. We show that if is a field of prime characteristic such that the monoid ‐algebra is , then is a finitely generated ‐algebra, or equivalently, that is a finitely generated monoid. Split‐‐regular rings are possibly non‐Noetherian or non‐‐finite rings that satisfy the defining property of strongly ‐regular rings from the theories of tight closure and ‐singularities. Our finite generation result provides evidence in favor of the conjecture that rings in function fields over have to be Noetherian. The key tool is Diophantine approximation from convex geometry.
more »
« less
- PAR ID:
- 10618133
- Publisher / Repository:
- Oxford University Press (OUP)
- Date Published:
- Journal Name:
- Journal of the London Mathematical Society
- Volume:
- 112
- Issue:
- 1
- ISSN:
- 0024-6107
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Let $$k$$ be a field, let $$H \subset G$$ be (possibly disconnected) reductive groups over $$k$$, and let $$\Gamma $$ be a finitely generated group. Vinberg and Martin have shown that the induced morphism $$\underline{\operatorname{Hom}}_{k\textrm{-gp}}(\Gamma , H)//H \to \underline{\operatorname{Hom}}_{k\textrm{-gp}}(\Gamma , G)//G$$ is finite. In this note, we generalize this result (with a significantly different proof) by replacing $$k$$ with an arbitrary locally Noetherian scheme, answering a question of Dat. Along the way, we use Bruhat–Tits theory to establish a few apparently new results about integral models of reductive groups over discrete valuation rings.more » « less
-
Unknown (Ed.)Let I = {In} be a Q-divisorial filtration on a two dimensional normal excellent local ring (R, mR). Let R[I] = ⊕n≥0In be the Rees algebra of I and τ : ProjR[I]) → Spec(R) be the natural morphism. The reduced fiber cone of I is the R- algebra R[I]/ p mRR[I], and the reduced exceptional fiber of τ is Proj(R[I]/ p mRR[I]). In [7], we showed that in spite of the fact that R[I] is often not Noetherian, mRR[I] always has only finitely many minimal primes, so τ −1 (mR) has only finitely many ir- reducible components. In Theorem 1.2, we give an explicit description of the scheme structure of Proj(R[I]). As a corollary, we obtain in Theorem 1.3 a new proof of a theorem of F. Russo, showing that Proj(R[I]) is always Noetherian and that R[I] is Noetherian if and only if Proj(R[I]) is a proper R-scheme. In Corollary 1.4 to Theorem 1.2, we give an explicit description of the scheme structure of the reduced exceptional fiber Proj(R[I]/ p mRR[I]) of τ , in terms of the possible values 0, 1 or 2 of the analytic spread l(I) = dim R[I]/mRR[I]. In the case that l(I) = 0, τ −1 (mR) is the emptyset; this case can only occur if R[I] is not Noetherian. At the end of the introduction, we give a simple example of a graded filtration J of a two dimensional regular local ring R such that Proj(R[J ]) is not Noetherian. This filtration is necessarily not divisorialmore » « less
-
Abstract A local ring R is regular if and only if every finitely generated R -module has finite projective dimension. Moreover, the residue field k is a test module: R is regular if and only if k has finite projective dimension. This characterization can be extended to the bounded derived category $$\mathsf {D}^{\mathsf f}(R)$$ , which contains only small objects if and only if R is regular. Recent results of Pollitz, completing work initiated by Dwyer–Greenlees–Iyengar, yield an analogous characterization for complete intersections: R is a complete intersection if and only if every object in $$\mathsf {D}^{\mathsf f}(R)$$ is proxy small. In this paper, we study a return to the world of R -modules, and search for finitely generated R -modules that are not proxy small whenever R is not a complete intersection. We give an algorithm to construct such modules in certain settings, including over equipresented rings and Stanley–Reisner rings.more » « less
-
Abstract This paper extends the results of Boij, Eisenbud, Erman, Schreyer and Söderberg on the structure of Betti cones of finitely generated graded modules and finite free complexes over polynomial rings, to all finitely generated graded rings admitting linear Noether normalizations. The key new input is the existence of lim Ulrich sequences of graded modules over such rings.more » « less
An official website of the United States government
