skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: When does ℵ1-categoricity implyω-stability ?
For an $$\aleph_1$$-categorical atomic class, we clarify the space of types over the unique model of size $$\aleph_1$$. Using these results, we prove that if such a class has a model of size $$\beth_1^+$$ then it is $$\omega$$-stable.  more » « less
Award ID(s):
2154101
PAR ID:
10618193
Author(s) / Creator(s):
; ;
Publisher / Repository:
Model Theory
Date Published:
Journal Name:
Model Theory
Volume:
3
Issue:
3
ISSN:
2832-904X
Page Range / eLocation ID:
801 to 823
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The purpose of this study was to examine the effects of different data conditions on item parameter recovery and classification accuracy of three dichotomous mixture item response theory (IRT) models: the Mix1PL, Mix2PL, and Mix3PL. Manipulated factors in the simulation included the sample size (11 different sample sizes from 100 to 5000), test length (10, 30, and 50), number of classes (2 and 3), the degree of latent class separation (normal/no separation, small, medium, and large), and class sizes (equal vs. nonequal). Effects were assessed using root mean square error (RMSE) and classification accuracy percentage computed between true parameters and estimated parameters. The results of this simulation study showed that more precise estimates of item parameters were obtained with larger sample sizes and longer test lengths. Recovery of item parameters decreased as the number of classes increased with the decrease in sample size. Recovery of classification accuracy for the conditions with two-class solutions was also better than that of three-class solutions. Results of both item parameter estimates and classification accuracy differed by model type. More complex models and models with larger class separations produced less accurate results. The effect of the mixture proportions also differentially affected RMSE and classification accuracy results. Groups of equal size produced more precise item parameter estimates, but the reverse was the case for classification accuracy results. Results suggested that dichotomous mixture IRT models required more than 2,000 examinees to be able to obtain stable results as even shorter tests required such large sample sizes for more precise estimates. This number increased as the number of latent classes, the degree of separation, and model complexity increased. 
    more » « less
  2. Object detection is a crucial task for autonomous driving. In addition to requiring high accuracy to ensure safety, object detection for autonomous driving also requires realtime inference speed to guarantee prompt vehicle control, as well as small model size and energy efficiency to enable embedded system deployment. In this work, we propose SqueezeDet, a fully convolutional neural network for object detection that aims to simultaneously satisfy all of the above constraints. In our network we use convolutional layers not only to extract feature maps, but also as the output layer to compute bounding boxes and class probabilities. The detection pipeline of our model only contains a single forward pass of a neural network, thus it is extremely fast. Our model is fully convolutional, which leads to small model size and better energy efficiency. Finally, our experiments show that our model is very accurate, achieving state-of-the-art accuracy on the KITTI [9] benchmark. The source code of SqueezeDet is open-source released1. 
    more » « less
  3. In this paper, we investigate Nash-regret minimization in congestion games, a class of games with benign theoretical structure and broad real-world applications. We first propose a centralized algorithm based on the optimism in the face of uncertainty principle for congestion games with (semi-)bandit feedback, and obtain finite-sample guarantees. Then we propose a decentralized algorithm via a novel combination of the Frank-Wolfe method and G-optimal design. By exploiting the structure of the congestion game, we show the sample complexity of both algorithms depends only polynomially on the number of players and the number of facilities, but not the size of the action set, which can be exponentially large in terms of the number of facilities. We further define a new problem class, Markov congestion games, which allows us to model the non-stationarity in congestion games. We propose a centralized algorithm for Markov congestion games, whose sample complexity again has only polynomial dependence on all relevant problem parameters, but not the size of the action set. 
    more » « less
  4. null (Ed.)
    We present a maximum-margin sparse Gaussian Process (MM-SGP) for active learning (AL) of classification models for multi-class problems. The proposed model makes novel extensions to a GP by integrating maximum-margin constraints into its learning process, aiming to further improve its predictive power while keeping its inherent capability for uncertainty quantification. The MM constraints ensure small "effective size" of the model, which allows MM-SGP to provide good predictive performance by using limited" active" data samples, a critical property for AL. Furthermore, as a Gaussian process model, MM-SGP will output both the predicted class distribution and the predictive variance, both of which are essential for defining a sampling function effective to improve the decision boundaries of a large number of classes simultaneously. Finally, the sparse nature of MM-SGP ensures that it can be efficiently trained by solving a low-rank convex dual problem. Experiment results on both synthetic and real-world datasets show the effectiveness and efficiency of the proposed AL model. 
    more » « less
  5. We consider a connection-level model proposed by Massoulié and Roberts for bandwidth sharing among file transfer flows in a communication network. We study weighted proportionally fair sharing policies and establish explicit-form bounds on the weighted sum of the expected numbers of flows on different routes in heavy traffic. The bounds are linear in the number of critically loaded links in the network, and they hold for a class of phase-type file-size distributions; that is, the bounds are heavy-traffic insensitive to the distributions in this class. Our approach is Lyapunov drift based, which is different from the widely used diffusion approximation approach. A key technique we develop is to construct a novel inner product in the state space, which then allows us to obtain a multiplicative type of state-space collapse in steady state. Furthermore, this state-space collapse result implies the interchange of limits as a byproduct for the diffusion approximation of the unweighted proportionally fair sharing policy under phase-type file-size distributions, demonstrating the heavy-traffic insensitivity of the stationary distribution. 
    more » « less