Abstract Superconductivity and exciton condensation are fundamental phenomena in condensed matter physics, associated with the condensation of electron–electron and electron–hole pairs, respectively, into coherent quantum states. In this study, we present evidence of a superconductor to exciton condensate transition within the context of the three-band Hubbard model of copper-oxide-like materials. As the electron–electron repulsion increases, the superconducting phase is superseded by exciton condensation. In support of theoretical predictions—not yet realized experimentally—we observe the coexistence of the two condensates in the vicinity of the transition where the quantum states become a superposition of electron–electron and electron–hole condensates. Coexistence is rigorously computed from large eigenvalues and their eigenvectors in both the two-electron reduced density matrix (2-RDM) and the particle-hole RDM, which we obtain from a direct variational ground-state energy minimization with respect to the 2-RDM by semidefinite programming. We further discern that adjacentdorbitals and interveningporbitals facilitate electron–electron pairing between copper orbitals, thereby supporting the superexchange mechanism for superconductivity. These observations suggest the feasibility of witnessing a superconductor to exciton condensate transition in copper-oxide analogs, bearing significant implications for identifying materials conducive to efficient transport processes.
more »
« less
Molecular origins of exciton condensation in van der Waals heterostructure bilayers
A “critical seed” of exciton condensation is found in molecular-scale fragments of van der Waals heterostructure bilayersviathe theoretical signature for exciton condensation, a large eigenvalue in the particle-hole reduced density matrix.
more »
« less
- Award ID(s):
- 2155082
- PAR ID:
- 10618250
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Chemical Science
- Volume:
- 15
- Issue:
- 48
- ISSN:
- 2041-6520
- Page Range / eLocation ID:
- 20371 to 20378
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Bose-Einstein condensation of excitons, with its potential for frictionless energy transport, has recently been observed in materials at low temperatures. Here, we show that partial exciton condensation plays a significant role in the 18-chromophore B850 ring of the light-harvesting complex 2 (LH2) in purple bacteria. Even in the single-excitation regime, we observe that excitonic entanglement across multiple sites exhibits signatures of exciton condensation in the particle-hole reduced density matrix—a partial exciton condensate. Crucially, we find that, by distributing the exciton across multiple sites of the ring, the exciton-condensate-like state sets favorable conditions for enhanced energy transfer, both before and after decoherence. Surprisingly, this discovery reveals that excitonic condensation, previously thought to require extreme conditions, can occur in a partial form in biological systems under ambient conditions, providing new insight into energy transport. These results additionally bring new insight into the long-standing debate on quantum versus classical mechanisms in photosynthetic light harvesting by showing that quantum coherence, in the form of a partial exciton condensate, indirectly initializes subsequent classical transfer. Our findings not only deepen our understanding of quantum coherence in light harvesting but also suggest design principles for materials capable of leveraging excitonic entanglement for efficient energy transport. Published by the American Physical Society2025more » « less
-
Abstract Fluorescent proteins (FPs) have recently emerged as a serious contender for realizing ultralow threshold room temperature exciton–polariton condensation and lasing. This contribution investigates the thermalization of FP microcavity exciton–polaritons upon optical pumping under ambient conditions. Polariton cooling is realized using a new FP molecule, called mScarlet, coupled strongly to the optical modes in a Fabry–Pérot cavity. Interestingly, at the threshold excitation energy (fluence) of ≈9 nJ per pulse (15.6 mJ cm−2), an effective temperature is observed,Teff ≈ 350 ± 35 K close to the lattice temperature indicative of strongly thermalized exciton–polaritons at equilibrium. This efficient thermalization results from the interplay of radiative pumping facilitated by the energetics of the lower polariton branch and the cavityQ‐factor. Direct evidence for dramatic switching from an equilibrium state into a metastable state is observed for the organic cavity polariton device at room temperature via deviation from the Maxwell–Boltzmann statistics atk‖ = 0 above the threshold. Thermalized polariton gases in organic systems at equilibrium hold substantial promise for designing room temperature polaritonic circuits, switches, and lattices for analog simulation.more » « less
-
Topological insulators are a class of electronic materials exhibiting robust edge states immune to perturbations and disorder. This concept has been successfully adapted in photonics, where topologically nontrivial waveguides and topological lasers were developed. However, the exploration of topological properties in a given photonic system is limited to a fabricated sample, without the flexibility to reconfigure the structurein situ. Here, we demonstrate an all-optical realization of the orbital Su–Schrieffer–Heeger model in a microcavity exciton-polariton system, whereby a cavity photon is hybridized with an exciton in a GaAs quantum well. We induce a zigzag potential for exciton polaritons all-optically by shaping the nonresonant laser excitation, and measure directly the eigenspectrum and topological edge states of a polariton lattice in a nonlinear regime of bosonic condensation. Furthermore, taking advantage of the tunability of the optically induced lattice, we modify the intersite tunneling to realize a topological phase transition to a trivial state. Our results open the way to study topological phase transitions on-demand in fully reconfigurable hybrid photonic systems that do not require sophisticated sample engineering.more » « less
-
The quasi-two-dimensional exciton subsystem in CdSe nanoplatelets is considered. It is theoretically shown that Bose–Einstein condensation (BEC) of excitons is possible at a nonzero temperature in the approximation of an ideal Bose gas and in the presence of an “energy gap” between the ground and the first excited states of the two-dimensional exciton center of inertia of the translational motion. The condensation temperature increases with the width of the “gap” between the ground and the first excited levels of size quantization. It is shown that when the screening effect of free electrons and holes on bound excitons is considered, the BEC temperature of the exciton subsystem increases as compared to the case where this effect is absent. The energy spectrum of the exciton condensate in a CdSe nanoplate is calculated within the framework of the weakly nonideal Bose gas approximation, considering the specifics of two-dimensional Born scattering.more » « less
An official website of the United States government

