skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Explainable AI-Guided Neural Architecture Search for Adversarial Robustness in Approximate DNNs
Deep neural networks are lucrative targets of adversarial attacks and approximate deep neural networks (AxDNNs) are no exception. Searching manually for adversarially robust AxDNN architectures incurs outrageous time and human effort. In this paper, we propose XAI-NAS, an explainable neural architecture search (NAS) method that leverages explainable artificial intelligence (XAI) to efficiently co-optimize the adversarial robustness and hardware efficiency of AxDNN architectures on systolic-array hardware accelerators. During the NAS process, AxDNN architectures are evolved layer-wise with heterogeneous approximate multipliers to deliver the best trade-offs between adversarial robustness, energy consumption, latency, and memory footprint. The most suitable approximate multipliers are automatically selected from an open-source Evoapprox8b library. Our extensive evaluations provide a set of Pareto optimal hardware efficient and adversarially robust solutions. For example, a Pareto-optimal DNN AxDNN for the MNIST and CIFAR-10 datasets exhibits up to 1.5× higher adversarial robustness, 2.1× less energy consumption, 4.39× reduced latency, and 2.37× low memory footprint when compared to the state-of-the-art NAS approaches.  more » « less
Award ID(s):
2323819
PAR ID:
10618279
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE Transactions on Sustainable Computing
Date Published:
Journal Name:
IEEE Transactions on Sustainable Computing
ISSN:
2377-3790
Page Range / eLocation ID:
1 to 15
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Approximate deep neural networks (AxDNNs) are promising for enhancing energy efficiency in real-world devices. One of the key contributors behind this enhanced energy efficiency in AxDNN is the use of approximate multipliers. Unfortunately, the simulation of approximate multipliers does not usually scale well on CPUs and GPUs. As a consequence, this slows down the overall simulation of AxDNNs aimed at identifying the appropriate approximate multipliers to achieve high energy efficiency with a minimum accuracy loss. To address this problem, we present a novel XAI-Gen methodology, which leverages the analytical model of the emerging hardware accelerator (e.g., Google TPU v4) and explainable artificial intelligence (XAI) to precisely identify the non-critical layers for approximation and quickly discover the appropriate approximate multipliers for AxDNN layers. Our results show that XAI-Gen achieves up to 7× lower energy consumption with only 1-2% accuracy loss. We also showcase the effectiveness of the XAI-Gen approach through a neural architecture search (XAI-NAS) case study. Interestingly, XAI-NAS achieves 40% higher energy efficiency with up to 5× less execution time when compared to the state-of-the-art NAS methods for generating AxDNNs. 
    more » « less
  2. Convolutional neural networks (CNNs) are used in numerous real-world applications such as vision-based autonomous driving and video content analysis. To run CNN inference on various target devices, hardware-aware neural architecture search (NAS) is crucial. A key requirement of efficient hardware-aware NAS is the fast evaluation of inference latencies in order to rank different architectures. While building a latency predictor for each target device has been commonly used in state of the art, this is a very time-consuming process, lacking scalability in the presence of extremely diverse devices. In this work, we address the scalability challenge by exploiting latency monotonicity --- the architecture latency rankings on different devices are often correlated. When strong latency monotonicity exists, we can re-use architectures searched for one proxy device on new target devices, without losing optimality. In the absence of strong latency monotonicity, we propose an efficient proxy adaptation technique to significantly boost the latency monotonicity. Finally, we validate our approach and conduct experiments with devices of different platforms on multiple mainstream search spaces, including MobileNet-V2, MobileNet-V3, NAS-Bench-201, ProxylessNAS and FBNet. Our results highlight that, by using just one proxy device, we can find almost the same Pareto-optimal architectures as the existing per-device NAS, while avoiding the prohibitive cost of building a latency predictor for each device. 
    more » « less
  3. Neural architecture search (NAS) is a promising technique to design efficient and high-performance deep neural networks (DNNs). As the performance requirements of ML applications grow continuously, the hardware accelerators start playing a central role in DNN design. This trend makes NAS even more complicated and time-consuming for most real applications. This paper proposes FLASH, a very fast NAS methodology that co-optimizes the DNN accuracy and performance on a real hardware platform. As the main theoretical contribution, we first propose the NN-Degree, an analytical metric to quantify the topological characteristics of DNNs with skip connections (e.g., DenseNets, ResNets, Wide-ResNets, and MobileNets). The newly proposed NN-Degree allows us to do training-free NAS within one second and build an accuracy predictor by training as few as 25 samples out of a vast search space with more than 63 billion configurations. Second, by performing inference on the target hardware, we fine-tune and validate our analytical models to estimate the latency, area, and energy consumption of various DNN architectures while executing standard ML datasets. Third, we construct a hierarchical algorithm based on simplicial homology global optimization (SHGO) to optimize the model-architecture co-design process, while considering the area, latency, and energy consumption of the target hardware. We demonstrate that, compared to the state-of-the-art NAS approaches, our proposed hierarchical SHGO-based algorithm enables more than four orders of magnitude speedup (specifically, the execution time of the proposed algorithm is about 0.1 seconds). Finally, our experimental evaluations show that FLASH is easily transferable to different hardware architectures, thus enabling us to do NAS on a Raspberry Pi-3B processor in less than 3 seconds. 
    more » « less
  4. In this work, we employ neural architecture search (NAS) to enhance the efficiency of deploying diverse machine learning (ML) tasks on in-memory computing (IMC) architectures. Initially, we design three fundamental components inspired by the convolutional layers found in VGG and ResNet models. Subsequently, we utilize Bayesian optimization to construct a convolutional neural network (CNN) model with adaptable depths, employing these components. Through the Bayesian search algorithm, we explore a vast search space comprising over 640 million network configurations to identify the optimal solution, considering various multi-objective cost functions like accuracy/latency and accuracy/energy. Our evaluation of this NAS approach for IMC architecture deployment spans three distinct image classification datasets, demonstrating the effectiveness of our method in achieving a balanced solution characterized by high accuracy and reduced latency and energy consumption. 
    more » « less
  5. Mode connectivity provides novel geometric insights on analyzing loss landscapes and enables building high-accuracy pathways between well-trained neural networks. In this work, we propose to employ mode connectivity in loss landscapes to study the adversarial robustness of deep neural networks, and provide novel methods for improving this robustness. Our experiments cover various types of adversarial attacks applied to different network architectures and datasets. When network models are tampered with backdoor or error-injection attacks, our results demonstrate that the path connection learned using limited amount of bonafide data can effectively mitigate adversarial effects while maintaining the original accuracy on clean data. Therefore, mode connectivity provides users with the power to repair backdoored or error-injected models. We also use mode connectivity to investigate the loss landscapes of regular and robust models against evasion attacks. Experiments show that there exists a barrier in adversarial robustness loss on the path connecting regular and adversarially-trained models. A high correlation is observed between the adversarial robustness loss and the largest eigenvalue of the input Hessian matrix, for which theoretical justifications are provided. Our results suggest that mode connectivity offers a holistic tool and practical means for evaluating and improving adversarial robustness . 
    more » « less