skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Projected Sea Surface Temperature Pattern Change and Madden‐Julian Oscillation Activity in a Warmer Climate
Abstract The Madden Julian Oscillation (MJO) consists of a tropical convective region that propagates eastward through the Indo‐Pacific warm pool. Decadal climate variability alters sea surface temperature patterns, affecting the MJO's basic state. This investigation examines the impact of projected SST and moisture pattern changes over the 21st Century on MJO precipitation and zonal wind amplitude changes in 80 members of the Community Earth System Model 2 Large Ensemble in the SSP370 radiative forcing scenario, each with its unique representation of decadal variability. Ensemble members with strongest MJO precipitation change in a given 20‐year period have a more El Niño‐like east Pacific warming pattern. MJO amplitude increases for east Pacific warming because of a strengthened meridional moisture gradient that supports MJO eastward propagation. A stronger vertical moisture gradient also exists for ensemble members with preferential east Pacific warming, which supports a stronger MJO under moisture mode theory.  more » « less
Award ID(s):
2217785
PAR ID:
10618367
Author(s) / Creator(s):
;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
52
Issue:
14
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Madden-Julian oscillation (MJO) has profound impacts on weather and climate phenomena, and thus changes in its activity have important implications under human-induced global climate change. Here, the time at which the MJO change signal emerges from natural variability under anthropogenic warming is investigated. Using simulations of the Community Earth System Model version 2 large ensemble forced by the shared socioeconomic pathways SSP370 scenario, an increase in ensemble mean MJO precipitation amplitude and a smaller increase in MJO circulation amplitude occur by the end of the 21 st century, consistent with previous studies. Notably, the MJO precipitation amplitude change signal generally emerges more than a decade earlier than that of MJO wind amplitude. MJO amplitude changes also emerge earlier over the eastern Pacific than other parts of the tropics. Our findings provide valuable information on the potential changes of MJO variability with the aim of improving predictions of the MJO and its associated extreme events. 
    more » « less
  2. Mechanisms that cause changes in Madden–Julian oscillation (MJO) precipitation amplitude under global warming are examined in models from phase 5 of the Coupled Model Intercomparison Project. Under global warming in representative concentration pathway 8.5, MJO precipitation intensifies in most models relative to current climate while MJO wind circulations increase at a slower rate or weaken. Changes in MJO precipitation intensity are partially controlled by changes in moisture profiles and static stability. The vertical moisture gradient increases in the lower half of the troposphere in response to the surface warming, while the vertical static stability gradient increases due to preferential warming in the upper troposphere. A nondimensional quantity called α has been defined that gives the efficiency of vertical advective moistening associated with diabatic processes in the free troposphere, and has been hypothesized by previous studies to regulate MJO amplitude. The term α is proportional to the vertical moisture gradient and inversely proportional to static stability. Under global warming, the increased vertical moisture gradient makes α larger in models, despite increased static stability. Although α increases in all models, MJO precipitation amplitude decreases in some models, contrary to expectations. It is demonstrated that in these models more top-heavy MJO diabatic heating with warming overwhelms the effect of increased α to make vertical moisture advection less efficient. 
    more » « less
  3. Abstract Future changes in boreal winter MJO teleconnections over the Pacific–North America (PNA) region are examined in 15 Coupled Model Intercomparison Project phase 6 models (CMIP6s) under SSP585 (i.e., Shared Socioeconomic Pathway 5 following approximately the representative concentration pathway RCP8.5) scenarios. The most robust and significant change is an eastward extension (∼4° eastward for the multimodel mean) of MJO teleconnections in the North Pacific. Other projected changes in MJO teleconnections include a northward extension, more consistent patterns between different MJO events, stronger amplitude, and shorter persistence; however, these changes are more uncertain and less significant with a large intra- and intermodel spread. Mechanisms of the eastward teleconnection extension are investigated by comparing impacts of the future MJO and basic state changes on the anomalous Rossby wave source (RWS) and teleconnection pathways with a linear baroclinic model (LBM). The eastward extended jet in the future plays a more important role than the eastward-extended MJO in influencing the east–west position of MJO teleconnections. It leads to more eastward teleconnection propagation along the jet due to the eastward extension of turning latitudes before they propagate into North America. MJO teleconnections thus are positioned 2.9° more eastward in the North Pacific in the LBM. The eastward extended MJO, on the other hand, helps to generate a more eastward-extended RWS. However, negligible change is found in the east–west position of MJO teleconnections (only 0.3° more eastward in the LBM) excited from this RWS without the jet impacts. The above results suggest the dominant role of the jet change in influencing future MJO teleconnection position by altering their propagation pathways. 
    more » « less
  4. Abstract The variability of the phase speed of the Madden–Julian oscillation (MJO) is poorly understood. The authors assess how the phase speed of the convective signal of the MJO associates with the background states over eastern Africa and the Indian Ocean. Relaxation of the coupling between tropical modes and their circulation has been previously linked to faster propagation; for example, the MJO speeds up over the eastern Pacific where its convective signal decouples from the circulation. In contrast, our results show that fast MJO events happen to exist during periods of wetter background states (>90 days) from East Africa across the Indian Ocean, whereas slow MJO is associated with dry background states. We found that fast MJO exhibits strong active and inactive phases with a structure suggesting more hierarchical convection. Results indicate that the association of the phase speed of the MJO as seen in the integrated filtered moist static energy with its tendency is stronger than the association of the phase speed as observed in the dry static energy with its tendency which is consistent with the acceleration of the MJO during wet background states. Also, our results indicate that the MJO may be faster during periods of enhanced low-level moisture because these periods have anomalously weak upper-tropospheric easterly background winds, which reduce the westward advection of the MJO by the background easterly wind, resulting in higher eastward phase speed of the MJO. The acceleration of the MJO by the background zonal wind overwhelms the deceleration associated with the moist-wave dynamics. Significance StatementThis study shows that the Madden–Julian oscillation (MJO), which is the dominant subseasonal weather signal in the tropics, moves eastward more quickly across eastern Africa and the Indian Ocean when the region is abnormally moist. The faster propagation does not appear to result from the higher moisture but instead from encountering weaker-than-normal upper-air winds from the east that tend to occur during moist periods. 
    more » « less
  5. Abstract In the equatorial and subtropical east Pacific Ocean, strong ocean‐atmosphere coupling results in large‐amplitude interannual variability. Recent literature debates whether climate models reproduce observed short and long‐term surface temperature trends in this region. We reconcile the debate by reevaluating a large range of trends in initial condition ensembles of 15 climate models. We confirm that models fail to reproduce long‐term trends, but also find that many models do not reproduce the observed decadal‐scale swings in the East to West gradient of the equatorial Pacific. Models with high climate sensitivity are less likely to reproduce observed decadal‐scale swings than models with a modest climate sensitivity, possibly due to an incorrect balance of cloud feedbacks driven by changing inversion strength versus surface warming. Our findings suggest that two not well understood problems of the current generation of climate models are connected and we highlight the need to increase understanding of decadal‐scale variability. 
    more » « less