Abstract The exchange between estuaries and the coastal ocean is a key dynamical driver impacting nutrient and phytoplankton concentrations and regulating estuarine residence time, hypoxia, and acidification. Estuarine exchange flows can be particularly challenging to monitor because many systems have strong vertical and lateral velocity shear and sharp gradients in water properties that vary over space and time, requiring high‐resolution measurements in order to accurately constrain the flux. The total exchange flow (TEF) method provides detailed information about the salinity structure of the exchange, but requires observations (or model resolution) that resolve the time and spatial co‐variability of salinity and currents. The goal of this analysis is to provide recommendations for measuring TEF with the most efficient spatial sampling resolution. Results from three realistic hydrodynamic models were investigated. These model domains included three estuary types: a bay (San Diego Bay), a salt‐wedge (Columbia River), and a fjord (Salish Sea). Model fields were sampled using three different mooring strategies, varying the number of mooring locations (lateral resolution) and sample depths (vertical resolution) with each method. The exchange volume transport was more sensitive than salinity to the sampling resolution. Most (>90%) of the exchange flow magnitude was captured by three to four moorings evenly distributed across the estuarine channel with a minimum threshold of 1–5 sample depths, which varied depending on the vertical stratification. These results can improve our ability to observe and monitor the exchange and transport of water masses efficiently with limited resources. 
                        more » 
                        « less   
                    This content will become publicly available on July 14, 2026
                            
                            A new high-resolution hydrodynamic model for the coastal Beaufort Sea in the Arctic Ocean: model construction and evaluation
                        
                    
    
            The aquatic environment of the coastal Arctic is rapidly changing, and understanding how this change will affect the coastal ocean is critical across sectors. To address this, a three-dimensional (3-D) hydrodynamic model was constructed, spanning the coastal Beaufort Sea from −153° to −142° W, explicitly including river delta channels and lagoons, and extending to the continental shelf. The Finite Volume Community Ocean Model (FVCOM) was used to predict ocean physical properties from January 2018 to September 2022, including dynamic sea ice and landfast ice. Model calibration and validation were conducted using a variety of data sources, includingin situhydrodynamic data from oceanographic cruises and moorings. Overall, the model captured interannual temperature variation at Prudhoe Bay from 2018 to 2022 with a model efficiency (MEF) score > 0 (better than the average) for all years (MEF = 0.59, 0.63, 0.23, 0.46, and 0.55). The seasonal temperatures in 2018 and 2019 at bottom-mounted moorings were also well captured (R2= 0.80–0.90), and sea surface height (SSH) was compared to hourly observations at Prudhoe Bay, with both the low-frequency (R2= 0.42) and diurnal (R2= 0.71) variations validated over the model period. Modeled salinity and water current velocity had mixed results compared to the observations: seasonal trends in salinity were generally captured well, but hypersaline lagoon conditions in the winter were not replicated. Measured bottom water velocity proved difficult to recreate within the model for any given point in time from 2018 to 2019. Covariance analyses of the surface wind velocity, SSH, and current velocity indicated that wind forcing significantly correlated to errors in local SSH predictions. Current velocity covaried substantially less with SSH and wind velocity, with large differences across the three moorings: this suggests that local factors such as bathymetry and shielding by islands are likely important. Future work building on this system will include analyses of the drivers of landfast ice and sea ice breakup; the potential for erosion via waves, large storms, and elevated surface temperatures; and the linkage to an ecosystem model that represents processes from carbon cycling to higher trophic levels. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10618388
- Publisher / Repository:
- Frontiers in Marine Science
- Date Published:
- Journal Name:
- Frontiers in Marine Science
- Volume:
- 12
- ISSN:
- 2296-7745
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract. Antarctica's ice shelves resist the flow of grounded ice towardsthe ocean through “buttressing” arising from their contact with ice rises,rumples, and lateral margins. Ice shelf thinning and retreat reducebuttressing, leading to increased delivery of mass to the ocean that adds toglobal sea level. Ice shelf response to large annual cycles in atmosphericand oceanic processes provides opportunities to study the dynamics of bothice shelves and the buttressed grounded ice. Here, we explore whetherseasonal variability of sea surface height (SSH) can explain observedseasonal variability of ice velocity. We investigate this hypothesis usingseveral time series of ice velocity from the Ross Ice Shelf (RIS),satellite-based estimates of SSH seaward of the RIS front, ocean models ofSSH under and near RIS, and a viscous ice sheet model. The observed annualchanges in RIS velocity are of the order of 1–10 m a−1 (roughly 1 % ofmean flow). The ice sheet model, forced by the observed and modelled rangeof SSH of about 10 cm, reproduces the observed velocity changes whensufficiently large basal drag changes near the grounding line areparameterised. The model response is dominated by grounding line migrationbut with a significant contribution from SSH-induced tilt of the ice shelf.We expect that climate-driven changes in the seasonal cycles of winds andupper-ocean summer warming will modify the seasonal response of ice shelvesto SSH and that nonlinear responses of the ice sheet will affect the longertrend in ice sheet response and its potential sea-level rise contribution.more » « less
- 
            The offshore transport of Greenland coastal waters influenced by freshwater input from ice sheet melting during summer plays an important role in ocean circulation and biological processes in the Labrador Sea. Many previous studies over the last decade have investigated shelfbreak transport processes in the region, primarily using ocean model simulations. Here, we use 27 years of surface geostrophic velocity observations from satellite altimetry, modified to include Ekman dynamics based on atmospheric reanalysis, and virtual particle releases to investigate seasonal and interannual variability in transport of coastal water in the Labrador Sea. Two sets of tracking experiments were pursued, one using geostrophic velocities only, and another using total velocities including the wind effect. Our analysis revealed substantial seasonal variability, even when only geostrophic velocities were considered. Water from coastal southwest Greenland is generally transported northward into Baffin Bay, although westward transport off the west Greenland shelf increases in fall and winter due to winds. Westward offshore transport is increased for water from southeast Greenland so that, in some years, water originating near the east Greenland coast during summer can be transported into the central Labrador Sea and the convection region. When wind forcing is considered, long-term trends suggest decreasing transport of Greenland coastal water during the melting season toward Baffin Bay, and increasing transport into the interior of the Labrador Sea for water originating from southeast Greenland during summer, where it could potentially influence water column stability. Future studies using higher-resolution velocity observations are needed to capture the role of submesoscale variability in transport pathways in the Labrador Sea.more » « less
- 
            Abstract Observations of ocean surface waves at three sites along the northern coast of Alaska show a strong correlation with seasonal sea ice patterns. In the winter, ice cover is complete, and waves are absent. In the spring and early summer, sea ice retreats regionally, but landfast ice persists near the coast. The landfast ice completely attenuates waves formed farther offshore in the open water, causing up to a two‐month delay in the onset of waves near shore. In autumn, landfast ice begins to reform, though the wave attenuation is only partial due to lower ice thickness compared to spring. The annual cycle in the observations is reproduced by the ERA5 reanalysis product, but the product does not resolve landfast ice. The resulting ERA5 bias in coastal wave exposure can be corrected by applying a higher‐resolution ice mask, and this has a significant effect on the long‐term trends inferred from ERA5.more » « less
- 
            Abstract High Salinity Shelf Water (HSSW) formed in the Ross Sea of Antarctica is a precursor to Antarctic Bottom Water (AABW), a water mass that constitutes the bottom limb of the global overturning circulation. HSSW production rates are poorly constrained, as in-situ observations are scarce. Here, we present high-vertical-and-temporal-resolution salinity time series collected in austral winter 2017 from a mooring in Terra Nova Bay (TNB), one of two major sites of HSSW production in the Ross Sea. We calculate an annual-average HSSW production rate of ~0.4Sv(106m3s−1), which we use to ground truth additional estimates across 2012–2021 made from parametrized net surface heat fluxes. We find sub-seasonal and interannual variability on the order of$$0.1$$ $${Sv}$$ , with a strong dependence on variability in open-water area that suggests a sensitivity of TNB HSSW production rates to changes in the local wind regime and offshore sea ice pack.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
