Abstract We introduce the map of dynamics of quantum Bose gases into dynamics of quasifree states, which we call the “nonlinear quasifree approximation”. We use this map to derive the time-dependent Hartree–Fock–Bogoliubov (HFB) equations describing the dynamics of quantum fluctuations around a Bose–Einstein condensate. We prove global well-posedness of the HFB equations for pair potentials satisfying suitable regularity conditions, and we establish important conservation laws. We show that the space of solutions of the HFB equations has a symplectic structure reminiscent of a Hamiltonian system. This is then used to relate the HFB equations to the HFB eigenvalue equations discussed in the physics literature. We also construct Gibbs equilibrium states at positive temperature associated with the HFB equations, and we establish criteria for the appearance of Bose–Einstein condensation. 
                        more » 
                        « less   
                    
                            
                            Monte Carlo methods in the manifold of Hartree–Fock–Bogoliubov wave functions
                        
                    
    
            We explore the possibility of implementing random walks in the manifold of Hartree–Fock–Bogoliubov wave functions. The goal is to extend state-of-the-art quantum Monte Carlo approaches, in particular the constrained-path auxiliary-field quantum Monte Carlo technique, to systems where finite pairing order parameters or complex pairing mechanisms, e.g., Fulde–Ferrell–Larkin–Ovchinnikov pairing or triplet pairing, may be expected. Leveraging the flexibility to define a vacuum state tailored to the physical problem, we discuss a method to use imaginary-time evolution of Hartree–Fock–Bogoliubov states to compute ground state correlations, extending beyond situations spanned by current formalisms. Illustrative examples are provided. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2207048
- PAR ID:
- 10618490
- Publisher / Repository:
- AIP Publishing
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 161
- Issue:
- 13
- ISSN:
- 0021-9606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The Hartree–Fock–Bogoliubov (HFB) theory is the starting point for treating superconducting systems. However, the computational cost for solving large scale HFB equations can be much larger than that of the Hartree–Fock equations, particularly when the Hamiltonian matrix is sparse, and the number of electrons N is relatively small compared to the matrix size N b . We first provide a concise and relatively self-contained review of the HFB theory for general finite sized quantum systems, with special focus on the treatment of spin symmetries from a linear algebra perspective. We then demonstrate that the pole expansion and selected inversion (PEXSI) method can be particularly well suited for solving large scale HFB equations. For a Hubbard-type Hamiltonian, the cost of PEXSI is at most 𝒪( N b 2 ) for both gapped and gapless systems, which can be significantly faster than the standard cubic scaling diagonalization methods. We show that PEXSI can solve a two-dimensional Hubbard-Hofstadter model with N b up to 2.88 × 10 6 , and the wall clock time is less than 100 s using 17 280 CPU cores. This enables the simulation of physical systems under experimentally realizable magnetic fields, which cannot be otherwise simulated with smaller systems.more » « less
- 
            Variational Quantum Algorithms (VQAs) rely upon the iterative optimization of a parameterized unitary circuit with respect to an objective function. Since quantum machines are noisy and expensive resources, it is imperative to choose a VQA's ansatz appropriately and its initial parameters to be close to optimal. This work tackles the problem of finding initial ansatz parameters by proposing CAFQA, a Clifford ansatz for quantum accuracy. The CAFQA ansatz is a hardware-efficient circuit built with only Clifford gates. In this ansatz, the initial parameters for the tunable gates are chosen by searching efficiently through the Clifford parameter space via classical simulation, thereby producing a suitable stabilizer state. The stabilizer states produced are shown to always equal or outperform traditional classical initialization (e.g., Hartree-Fock), and often produce high accuracy estimations prior to quantum exploration. Furthermore, the technique is classically suited since a) Clifford circuits can be exactly simulated classically in polynomial time and b) the discrete Clifford space, while scaling exponentially in the number of qubits, is searched efficiently via Bayesian Optimization. For the Variational Quantum Eigensolver (VQE) task of molecular ground state energy estimation up to 20 qubits, CAFQA's Clifford Ansatz achieves a mean accuracy of near 99%, recovering as much as 99.99% of the correlation energy over Hartree-Fock. Notably, the scalability of the approach allows for preliminary ground state energy estimation of the challenging Chromium dimer with an accuracy greater than Hartree-Fock. With CAFQA's initialization, VQA convergence is accelerated by a factor of 2.5x. In all, this work shows that stabilizer states are an accurate ansatz initialization for VQAs. Furthermore, it highlights the potential for quantum-inspired classical techniques to support VQAs.more » « less
- 
            Numerical difficulties associated with computing matrix elements of operators between Hartree–Fock–Bogoliubov (HFB) wavefunctions have plagued the development of HFB-based many-body theories for decades. The problem arises from divisions by zero in the standard formulation of the nonorthogonal Wick’s theorem in the limit of vanishing HFB overlap. In this Communication, we present a robust formulation of Wick’s theorem that stays well-behaved regardless of whether the HFB states are orthogonal or not. This new formulation ensures cancellation between the zeros of the overlap and the poles of the Pfaffian, which appears naturally in fermionic systems. Our formula explicitly eliminates self-interaction, which otherwise causes additional numerical challenges. A computationally efficient version of our formalism enables robust symmetry-projected HFB calculations with the same computational cost as mean-field theories. Moreover, we avoid potentially diverging normalization factors by introducing a robust normalization procedure. The resulting formalism treats even and odd number of particles on equal footing and reduces to Hartree–Fock as a natural limit. As proof of concept, we present a numerically stable and accurate solution to a Jordan–Wigner-transformed Hamiltonian, whose singularities motivated the present work. Our robust formulation of Wick’s theorem is a most promising development for methods using quasiparticle vacuum states.more » « less
- 
            Imaginary-time response functions of finite-temperature quantum systems are often obtained with methods that exhibit stochastic or systematic errors. Reducing these errors comes at a large computational cost—in quantum Monte Carlo simulations, the reduction of noise by a factor of two incurs a simulation cost of a factor of four. In this paper, we relate certain imaginary-time response functions to an inner product on the space of linear operators on Fock space. We then show that data with noise typically does not respect the positive definiteness of its associated Gramian. The Gramian has the structure of a Hankel matrix. As a method for denoising noisy data, we introduce an alternating projection algorithm that finds the closest positive definite Hankel matrix consistent with noisy data. We test our methodology at the example of fermion Green's functions for continuous-time quantum Monte Carlo data and show remarkable improvements of the error, reducing noise by a factor of up to 20 in practical examples. We argue that Hankel projections should be used whenever finite-temperature imaginary-time data of response functions with errors is analyzed, be it in the context of quantum Monte Carlo, quantum computing, or in approximate semianalytic methodologies. Published by the American Physical Society2024more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    