skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: Estimating Snow Coverage Percentage on Solar Panels Using Drone Imagery and Machine Learning for Enhanced Energy Efficiency
Snow accumulation on solar panels presents a significant challenge to energy generation in snowy regions, reducing the efficiency of solar photovoltaic (PV) systems and impacting economic viability. While prior studies have explored snow detection using fixed-camera setups, these methods suffer from scalability limitations, stationary viewpoints, and the need for reference images. This study introduces an automated deep-learning framework that leverages drone-captured imagery to detect and quantify snow coverage on solar panels, aiming to enhance power forecasting and optimize snow removal strategies in winter conditions. We developed and evaluated two approaches using YOLO-based models: Approach 1, a high-precision method utilizing a two-class detection model, and Approach 2, a real-time single-class detection model optimized for fast inference. While Approach 1 demonstrated superior accuracy, achieving an overall precision of 89% and recall of 82%, it is computationally expensive, making it more suitable for strategic decision making. Approach 2, with a precision of 93% and a recall of 75%, provides a lightweight and efficient alternative for real-time monitoring but is sensitive to lighting variations. The proposed framework calculates snow coverage percentages (SCP) to support snow removal planning, minimize downtime, and optimize power generation. Compared to fixed-camera-based snow detection models, our approach leverages drone imagery to improve detection precision while offering greater scalability to be adopted for large solar farms. Qualitative and quantitative analysis of both approaches is presented in this paper, highlighting their strengths and weaknesses in different environmental conditions.  more » « less
Award ID(s):
2244403
PAR ID:
10618502
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Energies
Volume:
18
Issue:
7
ISSN:
1996-1073
Page Range / eLocation ID:
1729
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    There has been significant growth in both utility-scale and residential-scale solar installations in recent years, driven by rapid technology improvements and falling prices. Unlike utility-scale solar farms that are professionally managed and maintained, smaller residential-scale installations often lack sensing and instrumentation for performance monitoring and fault detection. As a result, faults may go undetected for long periods of time, resulting in generation and revenue losses for the homeowner. In this article, we present SunDown, a sensorless approach designed to detect per-panel faults in residential solar arrays. SunDown does not require any new sensors for its fault detection and instead uses a model-driven approach that leverages correlations between the power produced by adjacent panels to detect deviations from expected behavior. SunDown can handle concurrent faults in multiple panels and perform anomaly classification to determine probable causes. Using two years of solar generation data from a real home and a manually generated dataset of multiple solar faults, we show that SunDown has a Mean Absolute Percentage Error of 2.98% when predicting per-panel output. Our results show that SunDown is able to detect and classify faults, including from snow cover, leaves and debris, and electrical failures with 99.13% accuracy, and can detect multiple concurrent faults with 97.2% accuracy. 
    more » « less
  2. null (Ed.)
    Solar arrays often experience faults that go undetected for long periods of time, resulting in generation and revenue losses. In this paper, we present SunDown, a sensorless approach for detecting per-panel faults in solar arrays. SunDown's model-driven approach leverages correlations between the power produced by adjacent panels to detect deviations from expected behavior, can handle concurrent faults in multiple panels, and performs anomaly classification to determine probable causes. Using two years of solar data from a real home and a manually generated dataset of solar faults, we show that our approach is able to detect and classify faults, including from snow, leaves and debris, and electrical failures with 99.13% accuracy, and can detect concurrent faults with 97.2% accuracy. 
    more » « less
  3. null (Ed.)
    The falling cost of solar energy deployments has resulted in ever-increasing growth in solar capacity worldwide. The primary challenge posed by increasing grid-tied solar capacity is handling its variability due to continuously changing conditions. Thus, prior work has developed highly sophisticated models to estimate and forecast solar power output based on many characteristics, including location, elevation, time, weather, shading, module type, wiring, etc. These models are highly accurate for estimating solar power, especially over long periods, for sites at low latitudes, i.e., closer to the equator. However, models for sites at higher latitudes are less accurate due to the effect of snow on solar output, since even a small amount of snow can cover panels and reduce power to zero. Improving the accuracy of these models for annual solar output by even 2--3% is significant, as power translates directly into revenue, which compounds over the system's lifetime. Thus, if a site produces 2--3% less power on average per year due to snow than a model predicts, it can mean the difference between a positive or negative return-on-investment. To address the problem, we develop DeepSnow, a data-driven approach that models the effect of snow on solar power generation. DeepSnow integrates with existing solar modeling frameworks, and uses publicly available snow data to learn its effect on solar generation. We leverage deep learning to quantify the effect of different snow variables on solar power using 4 million hourly readings from 40 solar sites. We evaluate our approach on 10 solar sites, and show that it yields a higher accuracy than the current approach for modeling snow effects used by the U.S. Department of Energy's System Advisor Model (SAM), a popular solar modeling framework. 
    more » « less
  4. Photovoltaic (PV) array analytics and control have become necessary for remote solar farms and for intelligent fault detection and power optimization. The management of a PV array requires auxiliary electronics that are attached to each solar panel. A collaborative industry-university-government project was established to create a smart monitoring device (SMD) and establish associated algorithms and software for fault detection and solar array management. First generation smart monitoring devices (SMDs) were built in Japan. At the same time, Arizona State University initiated research in algorithms and software to monitor and control individual solar panels. Second generation SMDs were developed later and included sensors for monitoring voltage, current, temperature, and irradiance at each individual panel. The latest SMDs include a radio and relays which allow modifying solar array connection topologies. With each panel equipped with such a sophisticated SMD, solar panels in a PV array behave essentially as nodes in an Internet of Things (IoT) type of topology. This solar energy IoT system is currently programmable and can: a) provide mobile analytics, b) enable solar farm control, c) detect and remedy faults, d) optimize power under different shading conditions, and e) reduce inverter transients. A series of federal and industry grants sponsored research on statistical signal analysis, communications, and optimization of this system. A Cyber-Physical project, whose aim is to improve solar array efficiency and robustness using new machine learning and imaging methods, was launched recently 
    more » « less
  5. This paper introduces a novel approach to detecting cyber attacks for power electronics-interfaced renewable resources, e.g., solar panels. The approach leverages the inherent variability of renewable energy generation to watermark the measurements of renewable resources that are vulnerable to false data injection (FDI) attacks. By checking the existence of the watermarks imprinted by the natural fluctuations of renewables, false data injection attacks can be detected. Compared with the conventional watermarking methods, the proposed approach does not require additional noise injection which compromises control performance. The effectiveness of the proposed approach is validated by simulating a solar photovoltaic system. 
    more » « less