Abstract We show that if an eventually positive, non-arithmetic, locally Hölder continuous potential for a topologically mixingcountable Markov shift with (BIP) has an entropy gap at infinity,then one may apply the renewal theorem of Kesseböhmer and Kombrink to obtain counting and equidistributionresults. We apply these general results to obtain counting and equidistribution results for cusped Hitchinrepresentations, and more generally for cusped Anosov representations of geometrically finite Fuchsian groups.
more »
« less
This content will become publicly available on February 1, 2026
Equilibrium measures for two-sided shift spaces via dimension theory
Given a two-sided shift space on a finite alphabet and a continuous potential function, we give conditions under which an equilibrium measure can be described using a construction analogous to Hausdorff measure that goes back to the work of Bowen. This construction was previously applied to smooth uniformly and partially hyperbolic systems by the first author, Pesin, and Zelerowicz. Our results here apply to all subshifts of finite type and Hölder continuous potentials, but extend beyond this setting, and we also apply them to shift spaces with synchronizing words.
more »
« less
- Award ID(s):
- 2154378
- PAR ID:
- 10618553
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Ergodic Theory and Dynamical Systems
- Volume:
- 45
- Issue:
- 2
- ISSN:
- 0143-3857
- Page Range / eLocation ID:
- 427 to 466
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We investigate the computability (in the sense of computable analysis) of the topological pressure P_top(ϕ) on compact shift spaces X for continuous potentials ϕ:X→R. This question has recently been studied for subshifts of finite type (SFTs) and their factors (sofic shifts). We develop a framework to address the computability of the topological pressure on general shift spaces and apply this framework to coded shifts. In particular, we prove the computability of the topological pressure for all continuous potentials on S-gap shifts, generalised gap shifts, and particular beta-shifts. We also construct shift spaces which, depending on the potential, exhibit computability and non-computability of the topological pressure. We further prove that the generalised pressure function (X,ϕ) ↦P_top(X,ϕ|_X) is not computable for a large set of shift spaces X and potentials ϕ . In particular, the entropy map X↦h_top(X) is computable at a shift spaceXif and only if X has zero topological entropy. Along the way of developing these computability results, we derive several ergodic-theoretical properties of coded shifts which are of independent interest beyond the realm of computability.more » « less
-
Abstract We consider discrete one-dimensional Schrödinger operators whose potentials are generated by sampling along the orbits of a general hyperbolic transformation. Specifically, we show that if the sampling function is a non-constant Hölder continuous function defined on a subshift of finite type with a fully supported ergodic measure admitting a local product structure and a fixed point, then the Lyapunov exponent is positive away from a discrete set of energies. Moreover, for sampling functions in a residual subset of the space of Hölder continuous functions, the Lyapunov exponent is positive everywhere. If we consider locally constant or globally fiber bunched sampling functions, then the Lyapuonv exponent is positive away from a finite set. Moreover, for sampling functions in an open and dense subset of the space in question, the Lyapunov exponent is uniformly positive. Our results can be applied to any subshift of finite type with ergodic measures that are equilibrium states of Hölder continuous potentials. In particular, we apply our results to Schrödinger operators defined over expanding maps on the unit circle, hyperbolic automorphisms of a finite-dimensional torus, and Markov chains.more » « less
-
We study covariate shift in the context of nonparametric regression. We introduce a new measure of distribution mismatch between the source and target distributions using the integrated ratio of probabilities of balls at a given radius. We use the scaling of this measure with respect to the radius to characterize the minimax rate of estimation over a family of H{ö}lder continuous functions under covariate shift. In comparison to the recently proposed notion of transfer exponent, this measure leads to a sharper rate of convergence and is more fine-grained. We accompany our theory with concrete instances of covariate shift that illustrate this sharp difference.more » « less
-
null (Ed.)In this paper, we study the asymptotic behavior of BV functions in complete metric measure spaces equipped with a doubling measure supporting a 1-Poincare inequality. We show that at almost every point x outside the Cantor and jump parts of a BV function, the asymptotic limit of the function is a Lipschitz continuous function of least gradient on a tangent space to the metric space based at x. We also show that, at co-dimension 1 Hausdorff measure almost every measure-theoretic boundary point of a set E of finite perimeter, there is an asymptotic limit set (E)∞ corresponding to the asymptotic expansion of E and that every such asymptotic limit (E)∞ is a quasiminimal set of finite perimeter. We also show that the perimeter measure of (E)∞ is Ahlfors co-dimension 1 regular.more » « less
An official website of the United States government
