Generative Artificial Intelligence (GenAI) is shifting the types and uses of computing tools in classrooms, necessitating study of how and what decisions are made about the use of AI in courses. All teachers will need to understand and be able to make important choices about GenAI for their learners. In this project, 25 teacher educators took an AI professional development course, and this paper describes their reflections and final projects. Participants at two large southeastern universities represented teacher preparation programs across all grade bands and disciplines. The shared practices the teacher educators used revealed ways GenAI can be a tool to support, not replace, a teacher. Limitations of GenAI applications are also discussed. The inclusion of all teacher educators in the project, and not just “faculty”, enabled more participation, along with the flexible timing of the online course, and personalization of the final project.
more »
« less
This content will become publicly available on February 25, 2026
Using Generative AI to Build Generative AI: A Case Study of Adding AI Chat to the Python Tutor Code Visualizer
In this post I want to talk about using generative AI to extend one of my academic software projects—the Python Tutor tool for learning programming—with an AI chat tutor. We often hear about GenAI being used in large-scale commercial settings, but we don’t hear nearly as much about smaller-scale not-for-profit projects. Thus, this post serves as a case study of adding generative AI into a personal project where I didn’t have much time, resources, or expertise at my disposal. Working on this project got me really excited about being here at this moment right as powerful GenAI tools are starting to become more accessible to nonexperts like myself.
more »
« less
- Award ID(s):
- 1845900
- PAR ID:
- 10618667
- Publisher / Repository:
- O'Reilly Radar
- Date Published:
- Format(s):
- Medium: X
- Institution:
- O'Reilly Publishers
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The introduction of generative artificial intelligence (GenAI) has been met with a mix of reactions by higher education institutions, ranging from consternation and resistance to wholehearted acceptance. Previous work has looked at the discourse and policies adopted by universities across the U.S. as well as educators, along with the inclusion of GenAI-related content and topics in higher education. Building on previous research, this study reports findings from a survey of engineering educators on their use of and perspectives toward generative AI. Specifically, we surveyed 98 educators from engineering, computer science, and education who participated in a workshop on GenAI in Engineering Education to learn about their perspectives on using these tools for teaching and research. We asked them about their use of and comfort with GenAI, their overall perspectives on GenAI, the challenges and potential harms of using it for teaching, learning, and research, and examined whether their approach to using and integrating GenAI in their classroom influenced their experiences with GenAI and perceptions of it. Consistent with other research in GenAI education, we found that while the majority of participants were somewhat familiar with GenAI, reported use varied considerably. We found that educators harbored mostly hopeful and positive views about the potential of GenAI. We also found that those who engaged more with their students on the topic of GenAI, both as communicators (those who spoke directly with their students) and as incorporators (those who included it in their syllabus), tend to be more positive about its contribution to learning, while also being more attuned to its potential abuses. These findings suggest that integrating and engaging with generative AI is essential to foster productive interactions between instructors and students around this technology. Our work ultimately contributes to the evolving discourse on GenAI use, integration, and avoidance within educational settings. Through exploratory quantitative research, we have identified specific areas for further investigation.more » « less
-
Since the release of ChatGPT in 2022, Generative AI (GenAI) is increasingly being used in higher education computing classrooms across the United States. While scholars have looked at overall institutional guidance for the use of GenAI and reports have documented the response from schools in the form of broad guidance to instructors, we do not know what policies and practices instructors are actually adopting and how they are being communicated to students through course syllabi. To study instructors' policy guidance, we collected 98 computing course syllabi from 54 R1 institutions in the U.S. and studied the GenAI policies they adopted and the surrounding discourse. Our analysis shows that 1) most instructions related to GenAI use were as part of the academic integrity policy for the course and 2) most syllabi prohibited or restricted GenAI use, often warning students about the broader implications of using GenAI, e.g. lack of veracity, privacy risks, and hindering learning. Beyond this, there was wide variation in how instructors approached GenAI including a focus on how to cite GenAI use, conceptualizing GenAI as an assistant, often in an anthropomorphic manner, and mentioning specific GenAI tools for use. We discuss the implications of our findings and conclude with current best practices for instructors.more » « less
-
Website privacy policies are often lengthy and intricate. Privacy assistants assist in simplifying policies and making them more accessible and user-friendly. The emergence of generative AI (genAI) offers new opportunities to build privacy assistants that can answer users’ questions about privacy policies. However, genAI’s reliability is a concern due to its potential for producing inaccurate information. This study introduces GenAIPABench, a benchmark for evaluating Generative AI-based Privacy Assistants (GenAIPAs). GenAIPABench includes: 1) A set of curated questions about privacy policies along with annotated answers for various organizations and regulations; 2) Metrics to assess the accuracy, relevance, and consistency of responses; and 3) A tool for generating prompts to introduce privacy policies and paraphrased variants of the curated questions. We evaluated three leading genAI systems—ChatGPT-4, Bard, and Bing AI—using GenAIPABench to gauge their effectiveness as GenAIPAs. Our results demonstrate significant promise in genAI capabilities in the privacy domain while also highlighting challenges in managing complex queries, ensuring consistency, and verifying source accuracy.more » « less
-
Hastings, Janna (Ed.)BackgroundHealthcare crowdsourcing events (e.g. hackathons) facilitate interdisciplinary collaboration and encourage innovation. Peer-reviewed research has not yet considered a healthcare crowdsourcing event focusing on generative artificial intelligence (GenAI), which generates text in response to detailed prompts and has vast potential for improving the efficiency of healthcare organizations. Our event, the New York University Langone Health (NYULH) Prompt-a-thon, primarily sought to inspire and build AI fluency within our diverse NYULH community, and foster collaboration and innovation. Secondarily, we sought to analyze how participants’ experience was influenced by their prior GenAI exposure and whether they received sample prompts during the workshop. MethodsExecuting the event required the assembly of an expert planning committee, who recruited diverse participants, anticipated technological challenges, and prepared the event. The event was composed of didactics and workshop sessions, which educated and allowed participants to experiment with using GenAI on real healthcare data. Participants were given novel “project cards” associated with each dataset that illuminated the tasks GenAI could perform and, for a random set of teams, sample prompts to help them achieve each task (the public repository of project cards can be found athttps://github.com/smallw03/NYULH-Generative-AI-Prompt-a-thon-Project-Cards). Afterwards, participants were asked to fill out a survey with 7-point Likert-style questions. ResultsOur event was successful in educating and inspiring hundreds of enthusiastic in-person and virtual participants across our organization on the responsible use of GenAI in a low-cost and technologically feasible manner. All participants responded positively, on average, to each of the survey questions (e.g., confidence in their ability to use and trust GenAI). Critically, participants reported a self-perceived increase in their likelihood of using and promoting colleagues’ use of GenAI for their daily work. No significant differences were seen in the surveys of those who received sample prompts with their project task descriptions ConclusionThe first healthcare Prompt-a-thon was an overwhelming success, with minimal technological failures, positive responses from diverse participants and staff, and evidence of post-event engagement. These findings will be integral to planning future events at our institution, and to others looking to engage their workforce in utilizing GenAI.more » « less
An official website of the United States government
