Purpose The purpose of this paper is as follows: to significantly reduce the computation time (by a factor of 1,000 and more) compared to known numerical techniques for real-world problems with complex interfaces; and to simplify the solution by using trivial unfitted Cartesian meshes (no need in complicated mesh generators for complex geometry). Design/methodology/approach This study extends the recently developed optimal local truncation error method (OLTEM) for the Poisson equation with constant coefficients to a much more general case of discontinuous coefficients that can be applied to domains with different material properties (e.g. different inclusions, multi-material structural components, etc.). This study develops OLTEM using compact 9-point and 25-point stencils that are similar to those for linear and quadratic finite elements. In contrast to finite elements and other known numerical techniques for interface problems with conformed and unfitted meshes, OLTEM with 9-point and 25-point stencils and unfitted Cartesian meshes provides the 3-rd and 11-th order of accuracy for irregular interfaces, respectively; i.e. a huge increase in accuracy by eight orders for the new 'quadratic' elements compared to known techniques at similar computational costs. There are no unknowns on interfaces between different materials; the structure of the global discrete system is the same for homogeneous and heterogeneous materials (the difference in the values of the stencil coefficients). The calculation of the unknown stencil coefficients is based on the minimization of the local truncation error of the stencil equations and yields the optimal order of accuracy of OLTEM at a given stencil width. The numerical results with irregular interfaces show that at the same number of degrees of freedom, OLTEM with the 9-points stencils is even more accurate than the 4-th order finite elements; OLTEM with the 25-points stencils is much more accurate than the 7-th order finite elements with much wider stencils and conformed meshes. Findings The significant increase in accuracy for OLTEM by one order for 'linear' elements and by 8 orders for 'quadratic' elements compared to that for known techniques. This will lead to a huge reduction in the computation time for the problems with complex irregular interfaces. The use of trivial unfitted Cartesian meshes significantly simplifies the solution and reduces the time for the data preparation (no need in complicated mesh generators for complex geometry). Originality/value It has been never seen in the literature such a huge increase in accuracy for the proposed technique compared to existing methods. Due to a high accuracy, the proposed technique will allow the direct solution of multiscale problems without the scale separation.
more »
« less
This content will become publicly available on October 1, 2026
A direct forcing, immersed boundary method for conjugate heat transport
Motivated by applications to fluid flows with conjugate heat transfer and electrokinetic effects, we propose a direct forcing immersed boundary method for simulating general, discontinuous, Dirichlet and Robin conditions at the interface between two materials. In comparison to existing methods, our approach uses smaller stencils and accommodates complex geometries with sharp corners. The method is built on the concept of a “forcing pair,” defined as two grid points that are adjacent to each other, but on opposite sides of an interface. For 2D problems this approach can simultaneously enforce discontinuous Dirichlet and Robin conditions using a six-point stencil at one of the forcing points, and a 12-point stencil at the other. In comparison, prior work requires up to 14-point stencils at both points. We also propose two methods of accommodating surfaces with sharp corners. The first locally reduces stencils in sharp corners. The second uses the signed distance function to globally smooth all corners on a surface. The smoothing is defined to recover the actual corners as the grid is refined. We verify second-order spatial accuracy of our proposed methods by comparing to manufactured solutions to the Poisson equation with challenging dis- continuous fields across immersed surfaces. Next, to explore the performance of our method for simulating fluid flows with conjugate heat transport, we couple our method to the incompressible Navier–Stokes and continuity equations using a finite-volume projection method. We verify the spatial-temporal accuracy of the solver using manufactured solutions and an analytical solution for circular Couette flow with conjugate heat transfer. Finally, to demonstrate that our method can model moving surfaces, we simulate fluid flow and conjugate heat transport between a stationary cylinder and a rotating ellipse or square.
more »
« less
- Award ID(s):
- 2306329
- PAR ID:
- 10618769
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Journal of Computational Physics
- Volume:
- 538
- Issue:
- C
- ISSN:
- 0021-9991
- Page Range / eLocation ID:
- 114135
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Stencil computations are widely used to simulate the change of state of physical systems across a multidimensional grid over multiple timesteps. The state-of-the-art techniques in this area fall into three groups: cache-aware tiled looping algorithms, cache-oblivious divide-and-conquer trapezoidal algorithms, and Krylov subspace methods. In this paper, we present two efficient parallel algorithms for performing linear stencil computations. Current direct solvers in this domain are computationally inefficient, and Krylov methods require manual labor and mathematical training. We solve these problems for linear stencils by using DFT preconditioning on a Krylov method to achieve a direct solver which is both fast and general. Indeed, while all currently available algorithms for solving general linear stencils perform Θ(NT) work, where N is the size of the spatial grid and T is the number of timesteps, our algorithms perform o(NT) work. To the best of our knowledge, we give the first algorithms that use fast Fourier transforms to compute final grid data by evolving the initial data for many timesteps at once. Our algorithms handle both periodic and aperiodic boundary conditions, and achieve polynomially better performance bounds (i.e., computational complexity and parallel runtime) than all other existing solutions. Initial experimental results show that implementations of our algorithms that evolve grids of roughly 10^7 cells for around 10^5 timesteps run orders of magnitude faster than state-of-the-art implementations for periodic stencil problems, and 1.3× to 8.5× faster for aperiodic stencil problems.more » « less
-
In this paper, we consider unsaturated filtration in heterogeneous porous media with rough surface topography. The surface topography plays an important role in determining the flow process and includes multiscale features. The mathematical model is based on the Richards’ equation with three different types of boundary conditions on the surface: Dirichlet, Neumann, and Robin boundary conditions. For coarse-grid discretization, the Generalized Multiscale Finite Element Method (GMsFEM) is used. Multiscale basis functions that incorporate small scale heterogeneities into the basis functions are constructed. To treat rough boundaries, we construct additional basis functions to take into account the influence of boundary conditions on rough surfaces. We present numerical results for two-dimensional and three-dimensional model problems. To verify the obtained results, we calculate relative errors between the multiscale and reference (fine-grid) solutions for different numbers of multiscale basis functions. We obtain a good agreement between fine-grid and coarse-grid solutions.more » « less
-
Stencil computations are widely used to simulate the change of state of physical systems across a multidimensional grid over multiple timesteps. The state-of-the-art techniques in this area fall into three groups: cache-aware tiled looping algorithms, cache-oblivious divide-and-conquer trapezoidal algorithms, and Krylov subspace methods. In this article, we present two efficient parallel algorithms for performing linear stencil computations. Current direct solvers in this domain are computationally inefficient, and Krylov methods require manual labor and mathematical training. We solve these problems for linear stencils by using discrete Fourier transforms preconditioning on a Krylov method to achieve a direct solver that is both fast and general. Indeed, while all currently available algorithms for solving general linear stencils perform Θ(NT) work, whereNis the size of the spatial grid andTis the number of timesteps, our algorithms performo(NT) work. To the best of our knowledge, we give the first algorithms that use fast Fourier transforms to compute final grid data by evolving the initial data for many timesteps at once. Our algorithms handle both periodic and aperiodic boundary conditions and achieve polynomially better performance bounds (i.e., computational complexity and parallel runtime) than all other existing solutions. Initial experimental results show that implementations of our algorithms that evolve grids of roughly 107cells for around 105timesteps run orders of magnitude faster than state-of-the-art implementations for periodic stencil problems, and 1.3× to 8.5× faster for aperiodic stencil problems. Code Repository:https://github.com/TEAlab/FFTStencilsmore » « less
-
Abstract Immersed boundary methods (IBMs) have evolved over the past 50 years from a specialized technique in biofluid dynamics and applied mathematics to a cornerstone of computational fluid dynamics. Many recent advancements in immersed boundary methods have centered on sharp-interface immersed boundary methods, which offer enhanced accuracy and fidelity for flow simulations. This paper outlines the key principles that have driven our own efforts in the development of sharp-interface immersed boundary methods over the past 25 years. We also highlight the power and versatility of these methods by showcasing a range of applications, spanning biolocomotion (i.e., swimming and flying), physiological flows, compressible aerodynamics, fluid–structure interaction (FSI), and flow-induced noise.more » « less
An official website of the United States government
