Abstract An immersed boundary‐finite element with soft‐body dynamics has been implemented to study steady flow over a finite patch of submerged flexible aquatic vegetation. The flow structure interaction model can resolve the flow interactions with flexible vegetation, and hence the reconfiguration of vegetation blades to ambient flow. Flow dynamics strongly depend on two dimensionless parameters, namely vegetation density and Cauchy number (defined as the ratio of the fluid drag force to the elastic force). Five different flow patterns have been identified based on vegetation density and Cauchy number, including the limited reach, swaying, “monami” A, “monami” B with slow moving interfacial wave, and prone. The “monami” B pattern occurred at high vegetation density and is different from “monami” A, in which the passage of Kelvin‐Helmholtz billows strongly affects the vegetation interface. With soft‐body dynamics, blade‐to‐blade interactions can also be resolved. At high vegetation density, the hydrodynamic interactions play an important role in blade‐to‐blade interactions, where adjacent vegetation blades interact via the interstitial fluid pressure. At low vegetation density, direct contacts among vegetation blades play important roles in preventing unphysical penetration of vegetation blades.
more »
« less
This content will become publicly available on March 1, 2026
Freeman Scholar Lecture (2021)—Sharp-Interface Immersed Boundary Methods in Fluid Dynamics
Abstract Immersed boundary methods (IBMs) have evolved over the past 50 years from a specialized technique in biofluid dynamics and applied mathematics to a cornerstone of computational fluid dynamics. Many recent advancements in immersed boundary methods have centered on sharp-interface immersed boundary methods, which offer enhanced accuracy and fidelity for flow simulations. This paper outlines the key principles that have driven our own efforts in the development of sharp-interface immersed boundary methods over the past 25 years. We also highlight the power and versatility of these methods by showcasing a range of applications, spanning biolocomotion (i.e., swimming and flying), physiological flows, compressible aerodynamics, fluid–structure interaction (FSI), and flow-induced noise.
more »
« less
- Award ID(s):
- 2011619
- PAR ID:
- 10632976
- Publisher / Repository:
- ASME
- Date Published:
- Journal Name:
- Journal of Fluids Engineering
- Volume:
- 147
- Issue:
- 3
- ISSN:
- 0098-2202
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Motivated by applications to fluid flows with conjugate heat transfer and electrokinetic effects, we propose a direct forcing immersed boundary method for simulating general, discontinuous, Dirichlet and Robin conditions at the interface between two materials. In comparison to existing methods, our approach uses smaller stencils and accommodates complex geometries with sharp corners. The method is built on the concept of a “forcing pair,” defined as two grid points that are adjacent to each other, but on opposite sides of an interface. For 2D problems this approach can simultaneously enforce discontinuous Dirichlet and Robin conditions using a six-point stencil at one of the forcing points, and a 12-point stencil at the other. In comparison, prior work requires up to 14-point stencils at both points. We also propose two methods of accommodating surfaces with sharp corners. The first locally reduces stencils in sharp corners. The second uses the signed distance function to globally smooth all corners on a surface. The smoothing is defined to recover the actual corners as the grid is refined. We verify second-order spatial accuracy of our proposed methods by comparing to manufactured solutions to the Poisson equation with challenging dis- continuous fields across immersed surfaces. Next, to explore the performance of our method for simulating fluid flows with conjugate heat transport, we couple our method to the incompressible Navier–Stokes and continuity equations using a finite-volume projection method. We verify the spatial-temporal accuracy of the solver using manufactured solutions and an analytical solution for circular Couette flow with conjugate heat transfer. Finally, to demonstrate that our method can model moving surfaces, we simulate fluid flow and conjugate heat transport between a stationary cylinder and a rotating ellipse or square.more » « less
-
Summary In this paper, a three‐dimensional numerical solver is developed for suspensions of rigid and soft particles and droplets in viscoelastic and elastoviscoplastic (EVP) fluids. The presented algorithm is designed to allow for the first time three‐dimensional simulations of inertial and turbulent EVP fluids with a large number particles and droplets. This is achieved by combining fast and highly scalable methods such as an FFT‐based pressure solver, with the evolution equation for non‐Newtonian (including EVP) stresses. In this flexible computational framework, the fluid can be modeled by either Oldroyd‐B, neo‐Hookean, FENE‐P, or Saramito EVP models, and the additional equations for the non‐Newtonian stresses are fully coupled with the flow. The rigid particles are discretized on a moving Lagrangian grid, whereas the flow equations are solved on a fixed Eulerian grid. The solid particles are represented by an immersed boundary method with a computationally efficient direct forcing method, allowing simulations of a large numbers of particles. The immersed boundary force is computed at the particle surface and then included in the momentum equations as a body force. The droplets and soft particles on the other hand are simulated in a fully Eulerian framework, the former with a level‐set method to capture the moving interface and the latter with an indicator function. The solver is first validated for various benchmark single‐phase and two‐phase EVP flow problems through comparison with data from the literature. Finally, we present new results on the dynamics of a buoyancy‐driven drop in an EVP fluid.more » « less
-
Interactions between an evolving solid and inviscid flow can result in substantial computational complexity, particularly in circumstances involving varied boundary conditions between the solid and fluid phases. Examples of such interactions include melting, sublimation, and deflagration, all of which exhibit bidirectional coupling, mass/heat transfer, and topological change of the solid–fluid interface. The diffuse interface method is a powerful technique that has been used to describe a wide range of solid-phase interface-driven phenomena. The implicit treatment of the interface eliminates the need for cumbersome interface tracking, and advances in adaptive mesh refinement have provided a way to sufficiently resolve diffuse interfaces without excessive computational cost. However, the general scale-invariant coupling of these techniques to flow solvers has been relatively unexplored. In this work, a robust method is presented for treating diffuse solid–fluid interfaces with arbitrary boundary conditions. Source terms defined over the diffuse region mimic boundary conditions at the solid–fluid interface, and it is demonstrated that the diffuse length scale has no adverse effects. To show the efficacy of the method, a one-dimensional implementation is introduced and tested for three types of boundaries: mass flux through the boundary, a moving boundary, and passive interaction of the boundary with an incident acoustic wave. Two-dimensional results are presented as well these demonstrate expected behavior in all cases. Convergence analysis is also performed and compared against the sharp-interface solution, and linear convergence is observed. This method lays the groundwork for the extension to viscous flow and the solution of problems involving time-varying mass-flux boundaries.more » « less
-
This article presents the evolutionary history of immersed boundary methods (IBMs), tracing their origins to the very beginning of computational fluid dynamics in the late 1950s all the way to the present day. The article highlights the advancements in this simulation methodology over the last 50 years and explores the interplay between IBMs and body-conformal grid methods during this time. Drawing upon the authors’ combined experience of more than 40 years in this arena, the perspective offered is personal and subjective. By employing a critical and comparative approach through the chronological lens, we hope that this article empowers the reader to understand both the capabilities and limitations of these methods, and to pursue advancements that fill the key gaps and break new ground.more » « less
An official website of the United States government
