skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on April 1, 2026

Title: Assessing the Molecular‐Level Controls of Dissolved Organic Matter Cycling in West Siberian Lowland Rivers
Abstract The West Siberian Lowland (WSL) contains some of the largest wetlands and most extensive peatlands on Earth, storing vast amounts of vulnerable carbon across permafrost‐free to continuous permafrost zones. As temperature and precipitation changes continue to alter the Siberian landscape, carbon transfer to the atmosphere and export to the Arctic Ocean will be impacted. However, the drivers of organic carbon transfer are largely unknown across this region. We characterized seasonal dissolved organic carbon (DOC) concentration and dissolved organic matter (DOM) composition of WSL rivers from the middle reaches of the Ob’ River in the permafrost‐free zone, as well as tributaries of the Taz River in the northern continuous permafrost zone. DOC and aromatic DOM properties increased from spring to autumn in the Ob’ tributaries, reflecting the seasonal transition from groundwater‐sourced to terrestrial DOM. Differences in molecular‐level signatures via ultra‐high resolution mass spectrometry revealed the influence of redox processes on DOM composition in the winter while terrestrial DOM sourcing shifted from surface litter aliphatics and highly unsaturated and phenolic high‐O/C (HUPHigh O/C) compounds in the spring to subsurface soils and HUPLow O/Ccompounds by autumn. Furthermore, aromaticity and organic N were related to landscape properties including peatlands, forest cover, and the ratio of needleleaf:broadleaf forests. Finally, the Taz River tributaries were similar to summer and autumn Ob’ tributaries, but more enriched in N and S‐containing compounds. These signatures were likely derived from thawing permafrost, which we expect to increase in northern rivers due to active layer expansion in a warming Arctic.  more » « less
Award ID(s):
2124464
PAR ID:
10618804
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
130
Issue:
4
ISSN:
2169-8953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract West Siberia contains some of the largest soil carbon stores on Earth owing to vast areas of peatlands and permafrost, with the region warming far faster than the global average. Organic matter transported in fluvial systems is likely to undergo distinct compositional changes as peatlands and permafrost warm. However, the influence of peatlands and permafrost on future dissolved organic matter (DOM) composition is not well characterized. To better understand how these environmental drivers may impact DOM composition in warming Arctic rivers, we used ultrahigh resolution Fourier‐transform ion cyclotron resonance mass spectrometry to analyze riverine DOM composition across a latitudinal gradient of West Siberia spanning both permafrost‐influenced and permafrost‐free watersheds and varying proportions of peatland cover. We find that peatland cover explains much of the variance in DOM composition in permafrost‐free watersheds in West Siberia, but this effect is suppressed in permafrost‐influenced watersheds. DOM from warm permafrost‐free watersheds was more heterogenous, higher molecular weight, and relatively nitrogen enriched in comparison to DOM from cold permafrost‐influenced watersheds, which were relatively enriched in energy‐rich peptide‐like and aliphatic compounds. Therefore, we predict that as these watersheds warm, West Siberian rivers will export more heterogeneous DOM with higher average molecular weight than at present. Such compositional shifts have been linked to different fates of DOM in downstream ecosystems. For example, a shift toward higher molecular weight, less energy‐rich DOM may lead to a change in the fate of this material, making it more susceptible to photochemical degradation processes, particularly in the receiving Arctic Ocean. 
    more » « less
  2. Abstract Climate change is dramatically altering Arctic ecosystems, leading to shifts in the sources, composition, and eventual fate of riverine dissolved organic matter (DOM) in the Arctic Ocean. Here we examine a 6‐year DOM compositional record from the six major Arctic rivers using Fourier‐transform ion cyclotron resonance mass spectrometry paired with dissolved organic carbon isotope data (Δ14C, δ13C) to investigate how seasonality and permafrost influence DOM, and how DOM export may change with warming. Across the pan‐Arctic, DOM molecular composition demonstrates synchrony and stability. Spring freshet brings recently leached terrestrial DOM with a latent high‐energy and potentially bioavailable subsidy, reconciling the historical paradox between freshet DOM's terrestrial bulk signatures and high biolability. Winter features undiluted baseflow DOM sourced from old, microbially degraded groundwater DOM. A stable core Arctic riverine fingerprint (CARF) is present in all samples and may contribute to the potential carbon sink of persistent, aged DOM in the global ocean. Future warming may lead to shifting sources of DOM and export through: (1) flattening Arctic hydrographs and earlier melt modifying the timing and role of the spring high‐energy subsidy; (2) increasing groundwater discharge resulting in a greater fraction of DOM export to the ocean occurring as stable and aged molecules; and (3) increasing contribution of nitrogen/sulfur‐containing DOM from microbial degradation caused by increased connectivity between groundwater and surface waters due to permafrost thaw. Our findings suggest the ubiquitous CARF (which may contribute to oceanic carbon sequestration) underlies predictable variations in riverine DOM composition caused by seasonality and permafrost extent. 
    more » « less
  3. Abstract River organic matter transformations impact the cycling of energy, carbon, and nutrients. The delivery of distinct dissolved organic matter (DOM) sources can alter aquatic DOM cycling and associated biogeochemical processes. Yet DOM source and reactivity are not well‐defined for many river systems, including in western Canada. Here, we explore DOM cycling in the mainstem of the Oldman River (stream order 6–7), a heavily regulated river network in southern Alberta (Canada). We compared seasonal river DOM content, composition, and bioavailability with nine endmember leachates from the river valley using optical properties and incubations to estimate biodegradable dissolved organic carbon (BDOC). River DOM composition was most similar to terrestrial soil leachates, followed by autochthonous DOM leachates. River DOM bioavailability was low (BDOC = 0%–16.6%, mean of 7.1%). Endmember leachate bioavailability increased from soils (BDOC = 23.9%–53.7%), to autochthonous sources (fish excretion, macrophytes, biofilm; BDOC = 49.9%–80.0%), to terrestrial vegetation (leaves, shrubs, grass; BDOC >  80%), scaling positively with protein‐like DOM content and amount of leachable dissolved organic carbon (DOC), and negatively with aromaticity. Seasonally, DOC concentrations changed little despite >15‐fold increases in discharge during spring. River DOM composition shifted modestly toward soil‐like endmembers in spring and more bioavailable autochthonous end members in autumn and winter. Low DOM bioavailability in the river mainstem and low DOC yields shown in previous work point to limited internal processing of DOM and limited bioavailable DOM delivery to downstream habitats, possibly due to upstream flow regulation. Our observations provide important insights into the functioning of western Canadian aquatic networks. 
    more » « less
  4. Coastal erosion mobilizes large quantities of organic matter (OM) to the Arctic Ocean where it may fuel greenhouse gas emissions and marine production. While the biodegradability of permafrost‐derived dissolved organic carbon (DOC) has been extensively studied in inland soils and freshwaters, few studies have examined dissolved OM (DOM) leached from eroding coastal permafrost in seawater. To address this knowledge gap, we sampled three horizons from bluff exposures near Drew Point, Alaska: seasonally thawed active layer soils, permafrost containing Holocene terrestrial and/or lacustrine OM, and permafrost containing late‐Pleistocene marine‐derived OM. Samples were leached in seawater to compare DOC yields, DOM composition (chromophoric DOM, Fourier transform ion cyclotron resonance mass spectrometry), and biodegradable DOC (BDOC). Holocene terrestrial permafrost leached the most DOC compared to active layer soils and Pleistocene marine permafrost. However, DOC from Pleistocene marine permafrost was the most biodegradable (33 ± 6% over 90 days), followed by DOC from active layer soils (23 ± 5%) and Holocene terrestrial permafrost (14 ± 3%). Permafrost leachates contained relatively more aliphatic and peptide‐like formulae, whereas active layer leachates contained relatively more aromatic formulae. BDOC was positively correlated with nitrogen‐containing and aliphatic formulae, and negatively correlated with polyphenolic and condensed aromatic formulae. Using estimates of eroding OM, we scale our results to estimate DOC and BDOC inputs to the Alaska Beaufort Sea. While DOC inputs from coastal erosion are relatively small compared to rivers, our results suggest that erosion may be an important source of BDOC to the Beaufort Sea when river inputs are low. 
    more » « less
  5. Abstract Wetland and permafrost soils contain some of Earth's largest reservoirs of organic carbon, and these stores are threatened by rapid warming across the Arctic. Nearly half of northern wetlands are affected by permafrost. As these ecosystems warm, the cycling of dissolved organic matter (DOM) and the opportunities for microbial degradation are changing. This is particularly evident as the relationship between wetland and permafrost DOM dynamics evolves, especially with the introduction of permafrost‐derived DOM into wetland environments. Thus, understanding the interplay of DOM composition and microbial communities from wetlands and permafrost is critical to predicting the impact of released carbon on global carbon cycling. As little is understood about the interactions between wetland active layer and permafrost‐derived sources as they intermingle, we conducted experimental bioincubations of mixtures of DOM and microbial communities from two fen wetland depths (shallow: 0–15 cm, and deep: 15–30 cm) and two ages of permafrost soil (Holocene and Pleistocene). We found that the source of microbial inoculum was not a significant driver of dissolved organic carbon (DOC) degradation across treatments; rather, DOM source and specifically, DOM molecular composition, controlled the rate of DOC loss over 100 days of bioincubations. DOC loss across all treatments was negatively correlated with modified aromaticity index, O/C, and the relative abundance of condensed aromatic and polyphenolic formula, and positively correlated with H/C and the relative abundance of aliphatic and peptide‐like formula. Pleistocene permafrost‐derived DOC exhibited ∼70% loss during the bioincubation driven by its initial molecular‐level composition, highlighting its high bioavailability irrespective of microbial source. 
    more » « less