skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Vanishing conditions for higher order couplings in heterotic theories
For compactifications of heterotic string theory, we elucidate simple cohomological conditions that lead to the vanishing of superpotential n-point couplings for all n. These results generalize some vanishing theorems for Yukawa couplings that have previously appeared in the literature to all higher orders. In some cases, these results are enough to show that certain fields do not appear in the perturbative superpotential at all. We illustrate our discussion with a number of concrete examples. In some cases, our results can be confirmed by showing that symmetries indeed forbid the couplings that vanish. In many, however, no such symmetries are known to exist and, as such, the infinite sets of vanishing couplings that are found are surprising from a four-dimensional perspective. Published by the American Physical Society2024  more » « less
Award ID(s):
2310588
PAR ID:
10618819
Author(s) / Creator(s):
Publisher / Repository:
APS (Physical Review D)
Date Published:
Journal Name:
Physical Review D
Volume:
110
Issue:
8
ISSN:
2470-0010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We construct compactifications of type IIB string theory that yield, at leading order in the α and g s expansions, de Sitter vacua of the form envisioned by Kachru We specify explicit Calabi-Yau orientifolds and quantized fluxes for which we derive the four-dimensional effective supergravity theories, incorporating the exact flux superpotential, the nonperturbative superpotential from Euclidean D3-branes, and the Kähler potential at tree level in the string loop expansion but to all orders in α . Each example includes a Klebanov-Strassler throat region containing a single anti-D3-brane, whose supersymmetry-breaking energy, computed at leading order in α , causes an uplift to a metastable de Sitter vacuum in which all moduli are stabilized. Finding vacua that demonstrably survive subleading corrections, and in which the quantization conditions are completely understood, is an important open problem for which this work has prepared the foundations. Published by the American Physical Society2025 
    more » « less
  2. Nonreciprocal interactions fueled by local energy consumption can be found in biological and synthetic active matter at scales where viscoelastic forces are important. Such systems can be described by “odd” viscoelasticity, which assumes fewer material symmetries than traditional theories. Here we study odd viscoelasticity analytically and using lattice Boltzmann simulations. We identify a pattern-forming instability which produces an oscillating array of fluid vortices, and we elucidate which features govern the growth rate, wavelength, and saturation of the vortices. Our observation of pattern formation through odd mechanical response can inform models of biological patterning and guide engineering of odd dynamics in soft active matter systems. Published by the American Physical Society2024 
    more » « less
  3. Lattice symmetries are central to the characterization of electronic topology. Recently, it was shown that Green's function eigenvectors form a representation of the space group. This formulation has allowed the identification of gapless topological states even when quasiparticles are absent. Here we demonstrate the profundity of the framework in the extreme case, when interactions lead to a Mott insulator, through a solvable model with long-range interactions. We find that both Mott poles and zeros are subject to the symmetry constraints, and relate the symmetry-enforced spectral crossings to degeneracies of the original noninteracting eigenstates. Our results lead to new understandings of topological quantum materials and highlight the utility of interacting Green's functions toward their symmetry-based design. Published by the American Physical Society2024 
    more » « less
  4. The global symmetries of a D -dimensional quantum field theory (QFT) can, in many cases, be captured in terms of a ( D + 1 )-dimensional symmetry topological field theory (SymTFT). In this work we construct a ( D + 1 )-dimensional theory which governs the symmetries of QFTs with multiple sectors which have connected correlators that admit a decoupling limit. The associated symmetry field theory decomposes into a SymTree, namely a treelike structure of SymTFTs fused along possibly nontopological junctions. In string-realized multisector QFTs, these junctions are smoothed out in the extradimensional geometry, as we demonstrate in examples. We further use this perspective to study the fate of higher-form symmetries in the context of holographic large M averaging where the topological sectors of different large M replicas become dressed by additional extended operators associated with the SymTree. Published by the American Physical Society2024 
    more » « less
  5. We provide some evidence for nonzero electron velocity at the tunnel exit in strong-field atomic ionization. Our investigation is based on the analysis of a suitably chosen correlation function which describes correlations between the two observables: the longitudinal electron velocity and the appearance of the photoelectron in the continuum at the end of the laser pulse. The results of the correlation function analysis that we perform are confirmed by the calculations using the quantum orbits method. Published by the American Physical Society2024 
    more » « less